x2-(m+4).x+4m=0
1) Khi m=-1
=> x2-3x-4=0
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
Xét \(\Delta=\left(m+4\right)^2-4.4m=m^2-8m+16=\left(m-4\right)^2>0\)
\(\Rightarrow x\ne4\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=m+4\\x_1x_2=4m\end{cases}}\)
do đó
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow x_1^2+x_2\left(x_1+x_2\right)=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)
\(\Leftrightarrow m^2+8m+16-4m=16\)
\(\Leftrightarrow m^2+4m=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)