Chọn D.
Gọi z1; z2 là hai nghiệm của phương trình đã cho
Theo Viet, ta có:
Theo bài cho, tổng bình phương hai nghiệm bằng 5. Ta có:
Suy ra: m2 = 5 - 12i
Do đó: m = ± ( 3 - 2i)
Vậy a = 3 ; b = -2 và a + 2b = -1
Chọn D.
Gọi z1; z2 là hai nghiệm của phương trình đã cho
Theo Viet, ta có:
Theo bài cho, tổng bình phương hai nghiệm bằng 5. Ta có:
Suy ra: m2 = 5 - 12i
Do đó: m = ± ( 3 - 2i)
Vậy a = 3 ; b = -2 và a + 2b = -1
Cho phương trình z 2 + m z - 6 i = 0 . Để phương trình có tổng bình phương hai nghiệm bằng 5 thì m có dạng m = ± ( a + b i ) ( a , b ∈ R ) . Giá trị a + 2 b là:
A. 0
B. 1
C. -2
D. -1
Cho phương trình z 2 + m z - 6 i = 0 . Để phương trình có tổng bình phương hai nghiệm bằng 5 thì m có dạng m = ± ( a + b i ) ( a , b ∈ R ) . Giá trị a + 2 b là:
A. 0
B. 1
C. -2
D. -1
Cho phương trình z 2 + m z - 6 i = 0 . Để phương trình có tổng bình phương hai nghiệm bằng 5 thì m có dạng m = ± ( a + b i ) ( a , b ∈ R ) . G i á t r ị a + 2 b là:
A. 0
B. 1
C. -1
D. –2
Trong tập số phức, giá trị của m để phương trình bậc hai z 2 + m z + i = 0 có tổng bình phương hai nghiệm bằng -4i là:
A. ±(1 - i)
B. (1 - i)
C. ±(1 + i)
D. -1 - i
Trong tập số phức, giá trị của m để phương trình bậc hai z2 + mz + i = 0 có tổng bình phương hai nghiệm bằng -4i là:
A. ±( 1 - i)
B. 1 - i
C. ±( 1 + i)
D. -1 - i
Tìm tổng các giá trị của m để hai phương trình z 2 + mz + 2 = 0 và - z 2 + 2z + m có ít nhất một nghiệm phức chung.
A. -2
B. 3
C. 1
D. 5
Cho phương trình (m + 1) 16x - 2( 2m - 3) .4x + 6m + 5 = 0 với m là tham số thực. Tập tất cả các giá trị của m để phương trình có hai nghiệm trái dấu có dạng (a; b). Tính P = a.b
A. 4
B. -4
C. 5
D. -5
Cho phương trình m x 2 - 2 x + 2 + 1 - x 2 + 2 x = 0 (m là tham số). Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình trên có nghiệm thuộc đoạn 0 ; 1 + 2 2 là đoạn a ; b . Tính giá trị biểu thức T = 2 b - a
A. T = 4
B. T = 7 2
C. T = 3
D. T = 1 2
Cho phương trình ( m - 5 ) . 3 x + ( 2 m - 2 ) . 2 x . 3 x + ( 1 - m ) . 4 x = 0 , tập hợp tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt là khoảng (a;b). Tính S=a+b
A.4
B.5
C.6
D.8