Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
_little rays of sunshine...

Cho phương trình : \(x^2+6x+6m-m^2\) ( với m là tham số ). Tìm m để phương trình thoả mãn : \(x^3_1-x_2^3+2x_1^2+12x_1+72=0\) với : \(x_1;x_2\) là nghiệm của phương trình trên .

Mong các anh chị hay các bạn giúp mình với.

Nguyễn Đức Trí
3 tháng 10 2023 lúc 16:30

\(x^2+6x+6m-m^2=0\left(1\right)\)

Áp dụng định lý Viet ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-6\\P=x_1.x_2=6m-m^2\end{matrix}\right.\)

\(\Delta'=9-6m+m^2=\left(m-3\right)^2\ge0,\forall m\in R\)

\(\Rightarrow\sqrt[]{\Delta'}=\left|m-3\right|\)

Phương trình \(\left(1\right)\) có 2 nhiệm phân biệt

\(\left[{}\begin{matrix}x_1=-3+\left|m-3\right|\\x_2=-3-\left|m-3\right|\end{matrix}\right.\)

\(\Rightarrow x_1-x_2=2\left|m-3\right|\)

Theo đề bài ta có :

\(x^3_1-x^3_2+2x^2_1+12x_1+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x^2_1+x^2_2+x_1.x_2\right)+2x^2_1+12x_1+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1.x_2\right]+2x^2_1+12x_1+72=0\)

\(\Leftrightarrow2\left|m-3\right|\left(36-6m+m^2\right)+2\left[-3+\left|m-3\right|\right]^2+12\left[-3+\left|m-3\right|\right]+72=0\)

\(\Leftrightarrow2\left|m-3\right|\left(9-6m+m^2+27\right)+2\left[-3+\left|m-3\right|\right]^2+12\left[-3+\left|m-3\right|\right]+72=0\)

\(\Leftrightarrow2\left|m-3\right|\left[\left(m-3\right)^2+27\right]+2\left[-3+\left|m-3\right|\right]^2+12\left[-3+\left|m-3\right|\right]+72=0\left(a\right)\)

- Với \(m>3\)

\(\left(a\right)\Leftrightarrow2\left(m-3\right)\left[\left(m-3\right)^2+27\right]+2\left[-3+m-3\right]^2+12\left[-3+m-3\right]+72=0\)

\(\Leftrightarrow2\left(m-3\right)\left[\left(m-3\right)^2+27\right]+2\left(m-6\right)^2+12\left(m-6\right)+72=0\)

Đặt \(t=m-3>0\)

\(pt\Leftrightarrow2t\left(t^2+27\right)+2\left(t-3\right)^2+12\left(t-3\right)+72=0\)

\(\Leftrightarrow2t^3+54t+2t^2-12t+18+12t-36+72=0\)

\(\Leftrightarrow2t^3+2t^2+54t+54=0\)

\(\Leftrightarrow2t^2\left(t+1\right)+54\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(2t^2+54\right)=0\)

\(\Leftrightarrow t+1=0\left(2t^2+54>0,\forall t\in R\right)\)

\(\Leftrightarrow t=-1\left(ktm\right)\)

- Với \(m< 3\)

\(\left(a\right)\Leftrightarrow2\left(3-m\right)\left[\left(3-m\right)^2+27\right]+2\left[-3-m+3\right]^2+12\left[-3-m+3\right]+72=0\)

\(\Leftrightarrow2\left(3-m\right)\left[\left(3-m\right)^2+27\right]+2m^2-12m+72=0\)

\(\Leftrightarrow2\left(3-m\right)\left[\left(3-m\right)^2+27\right]-2m\left(6-m\right)+72=0\)

Đặt \(t=3-m< 0\)

\(pt\Leftrightarrow2t\left(t^2+27\right)-2\left(3-t\right)\left(3+t\right)+72=0\)

\(\Leftrightarrow2t^3+54t-18+2t^2+72=0\)

\(\Leftrightarrow2t^3+2t^2+54t+54=0\)

\(\Leftrightarrow2t^2\left(t+1\right)+54\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(2t^2+54\right)=0\)

\(\Leftrightarrow t+1=0\left(2t^2+54>0,\forall t\in R\right)\)

\(\Leftrightarrow t=-1\)

\(\Leftrightarrow3-m=-1\)

\(\Leftrightarrow m=4\left(ktm\right)\)

- Với \(m=3\)

\(\left(a\right)\Leftrightarrow0+2.9-36+72=54=0\left(vô.lý\right)\)

\(\Rightarrow m=3\left(loại\right)\)

Vậy không có m nào để thỏa yêu cầu đề bài.


Các câu hỏi tương tự
Hoàng Tiến Long
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Ngọc Mai
Xem chi tiết
⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Xem chi tiết
Nguyễn Tấn Thịnh
Xem chi tiết
Lê Duy Thanh
Xem chi tiết
????1298765
Xem chi tiết
Hạ Mặc Tịch
Xem chi tiết
Giáp Văn Long
Xem chi tiết