Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

cho  phương trình :x^2-(m+1)x+m=0 (1) (m là tham số) tìm m đẻ hai nghiệm của phương trình(1) là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng 17

YangSu
7 tháng 4 2023 lúc 13:14

Gọi \(x_1,x_2\) là độ dài cạnh góc vuông của tam giác trên.

Áp dụng d/l Pytago, ta có : \(x_1^2+x_2^2=17\) \(\left(2\right)\)

\(x^2-\left(m+1\right)x+m=0\) \(\left(1\right)\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+1\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

Từ \(\left(2\right)\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=17\)

\(\Leftrightarrow\left(m+1\right)^2-2m-17=0\)

\(\Leftrightarrow m^2+2m+1-2m-17=0\)

\(\Leftrightarrow m^2-16=0\)

\(\Leftrightarrow m=\sqrt{16}\)

\(\Leftrightarrow m=\pm4\)

takaki rouchito
7 tháng 4 2023 lúc 13:09

cho PT:x^2-(m+1)x+m=0 (1)

-ta có:\(\Delta=\left(m+1\right)^2-4m=m^2+2m+1-4m=\left(m-1\right)^2\ge0\) với mọi m

vậy với mọi m PT (1) có 2 nghiệm \(x_1,x_2\)

theo vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=m+1\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

vì \(x_1x_2\) là độ dài hai cạnh góc vuông của tam giác vuông có cạnh huyền là 17 nên \(x_1>0,x_2>0\) \(\)

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=m+1>0\\\Rightarrow m>0vàx_1^2+x_2^2=17^2\\x_1x_2=\dfrac{c}{a}=m>2\end{matrix}\right.\)

ta có: \(x_1^2+x_2^2=17^2\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=289\) 

\(\Leftrightarrow\left(m+1\right)^2-2m=289\)

\(\Leftrightarrow m^2=288\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\sqrt{288\left(TM\right)}\\m_2=-\sqrt{288\left(KTM\right)}\end{matrix}\right.\)

vậy\(m=\sqrt{288}\)


Các câu hỏi tương tự
Lê Thị Khánh Đoan
Xem chi tiết
Gempio Louis
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Tạ Đức Chính
Xem chi tiết
....
Xem chi tiết
Lucy Heartfilia
Xem chi tiết
Lucy Heartfilia
Xem chi tiết
Lucy Heartfilia
Xem chi tiết
ha thi linh
Xem chi tiết