Δ=(2m+2)^2-4(m^2+3)
=4m^2+8m+4-4m^2-12=8m-8
Để phương trình có hai nghiệm thì 8m-8>=0
=>m>=1
Theo đề,ta có: \(m^2+3< =2\left(m+1\right)\)
=>m^2+3-2m-2<=0
=>m^2-2m+1<=0
=>m=1
Δ=(2m+2)^2-4(m^2+3)
=4m^2+8m+4-4m^2-12=8m-8
Để phương trình có hai nghiệm thì 8m-8>=0
=>m>=1
Theo đề,ta có: \(m^2+3< =2\left(m+1\right)\)
=>m^2+3-2m-2<=0
=>m^2-2m+1<=0
=>m=1
Các giá trị của tham số m để phương trình 2x2+(m-1)x-m-1=0 có hai nghiệm phân biêt x1;x2 thỏa mãn x1≤1<x2 là
A.m>-1 B.m<-1 C.m>-3 D.m<-3
Cho phương trình x2+(m+2)x+m=0.Giá trị của m để phương trình có hai nghiệm cùng dấu là
A.m=0 B.m>0 C.m<0 D.m≥0
Với giá trị nào của m thì phương trình x2-2x+3m-1=0 có hai nghiệm x1 và x2 thỏa mãn x12+x22=10
A.m=\(\dfrac{-4}{3}\) B.m=\(\dfrac{4}{3}\) C.m=\(\dfrac{-2}{3}\) D.m=\(\dfrac{2}{3}\)
Cho phương trình: x2 - 2(m - 1)x + m2 - 3m = 0 (1) với m là tham số.
a) Giải phương trình (1) khi m = 0.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn điều kiện: |x1| - 4 ≥ - |x2|
Cho phương trình : x2+(m-1)x-m2-2=0 (m là tham số).Tìm giá trị của m để phương trình có hai nghiệm trái dấu thỏa mãn 2|x1|-|x2|=4(biết x1<x1)
Cho phương trình
(m2 +m +1) x2 -(m2 +2m+2) x-1=0
a) chứng tỏ rằng phương trình có hai nghiệm trái dấu.
b) gọi x1, x2 là hai nghiệm của phương trình trên. Tìm giá trị lớn nhất và nhỏ nhất của tổng: s= x1 +x2
Có bao nhiêu giá trị của m để phương trình x 2 – (2m + 1)x + m 2 + 1 = 0 (1) có hai nghiệm phân biệt x 1 ; x 2 thỏa mãn ( x 1 ; x 2 ) 2 = x 1
A. 2
B. 3
C. 4
D. 1
Cho phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0. Xác định m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn A = x 1 + x 2 − 3 x 1 x 2 đạt giá trị lớn nhất
A. m = 1 3
B. m = − 1 3
C. m = 3
D. m = −3
Phương trình x2-2(m+1)x-3=0 có hai nghiệm phân biệt là hai số đối nhau khi
A.m=1 B.m=0 C.m=2 D.m=-1