Phương trình có Δ ' = m + 1 2 − 1. m − 1 = m 2 + 2 m + 1 − m + 1 = m 2 + m + 2 .
Δ ' = m 2 + m + 2 = m + 1 2 2 + 2 − 1 4 = m + 1 2 2 + 7 4 > 0 , ∀ m .
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m.
Khi đó, theo Vi-ét
x 1 + x 2 = 2 m + 2 ( 1 ) x 1 . x 2 = m − 1 ( 2 ) ;
Theo đề bài ta có 3 x 1 + x 2 = 0 (3)
Từ (1) và (3) suy ra x 1 = − 1 − m ; x 2 = 3 m + 3 thay vào (2) ta được
− 1 − m 3 m + 3 = m − 1 ⇔ m = − 2 m = − 1 3