Cho phương trình: \(\left(m-1\right)x^2-4mx+4m+1=0.\)
a) Giải phương trình khi m=2
b) Tìm m để phương trình vô nghiệm
c) Tìm m để phương trình có 2 nghiệm phân biệt. Tìm biểu thức liên hệ giữa 2 nghiệm độc lập với m
d) Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn x1 + x2 + x1x2 = 17
e) Tìm m để phương trình có 2 nghiệm dương phân biệt.
f) Tìm m để phương trình có 2 nghiệm âm phân biệt.
g) Tìm m để phương trình có 2 nghiệm trái dấu
h) Tìm m để \(\left|x_1+x_2\right|=2\sqrt{7}.\)
i) Tìm m để nghiệm này bằng 2 lần nghiệm kia
a, Với m=2
\(Pt\Leftrightarrow x^2-8x+9=0\Leftrightarrow\left(x-4\right)^2=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{7}\\x-4=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
Vậy pt có 2 nghiệm phân biệt \(\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)