Cho phương trình sin x + m 2 3 + sin 2 x - m 2 3 = 2 sin x - m 2 3 . Gọi S = [a;b] là tập hợp tất cả các giá trị thực của tham số m để phương trình trên có nghiệm thực. Tìm giá trị của P = a 2 + b 2
A. P = 162 49
B. P = 49 162
C. P = 4
D. P = 2
Tổng tất cả các giá trị nguyên của m để phương trình 4 sin x + ( m - 4 ) cos x - 2 m + 5 = 0 có nghiệm là:
A. 5
B. 6
C. 10
D. 3
Gọi S là tập hợp các nghiệm thuộc đoạn - 2 π , 2 π của phương trình
5 sin x + cos 3 x + sin 3 x 1 + 2 sin 2 x = cos 2 x + 3
Giả sử M,m là phần tử lớn nhất và nhỏ nhất của tập hợp S. Tính H=M-m.
A. H = 2 π
B. H = 10 π 3
C. H = 11 π 3
D. H = 7 π 3
Số giá trị nguyên m để phương trình 4 m - 4 . sin x . cos x + m - 2 . cos 2 x = 3 m - 9 . Có nghiệm là:
A. 7
B. 6
C. 5
D. 4
Tìm tất cả các giá trị thực của tham số m để phương trình sau có nghiệm 2 m cos x + sin x = 2 m 2 + cos x − sin x + 3 2
A. − 1 2 < m < 1 2
B. m = ± 1 2
C. − 1 4 < m < 1 4
D. m = ± 1 4
Gọi S là tập tất cả các giá trị thực của tham số m để bất phương trình
x 6 + 3 x 4 − m 3 x 3 + 4 x 2 − m x + 2 ≥ 0 có nghiệm với mọi x ∈ ℝ . Biết rằng S = a ; b , a , b ∈ ℝ . Tính P = 2 b − 3 a
A. P = 5
B. P = 10
C. P = 15
D. P = 0
Gọi S là tập hợp các giá trị thực của tham số m sao cho phương trình ( x + 1 ) 3 + 3 - m = 3 3 x + m 3 có đúng nghiệm thực. Tích tất cả các phần tử của tập hợp S là
A. -1
B. 1
C. 3
D. 5
Tất cả các giá trị thực của tham số m để phương trình cos 2 x - 2 m - 1 cos x - m + 1 = 0 có đúng 2 nghiệm thuộc đoạn - π 2 ; π 2 là
A. - 1 ≤ m ≤ 0
B. 0 ≤ m ≤ 1
C. - 1 ≤ m ≤ 1
D. 0 ≤ m ≤ 1
Gọi S là tập tất cả các giá trị nguyên của tham số m với m < 64 để phương trình log 1 5 x + m + log 5 2 - x = 0 có nghiệm. Tính tổng tất cả các phần tử của S
A. 2018
B. 2016
C. 2015
D. 2013