1) Với m = 1 thì ta có:
\(x^2-2\left(1-1\right)x+2\cdot1-3=0\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
2) Ta có: \(\Delta^'=\left[-\left(m-1\right)\right]^2-\left(2m-3\right)\cdot1=m^2-2m+1-2m+3\)
\(=m^2-4m+4=\left(m-2\right)^2\ge0\left(\forall m\right)\)
=> PT luôn có nghiệm với mọi m
Theo hệ thức viet ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1+x_2-1=2m-3\\x_1x_2=2m-3\end{cases}}\)
\(\Rightarrow x_1+x_2-1=x_1x_2\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=0\)