cho phương trình : \(^{x^2-\left(m-1\right)-m^2+m-2=0}\), với m là tham số
a, chứng minh rằng phương trình đã cho có hai nghiệm trái dấu với mọi m
b, gọi hai nghiệm của phương trình đã cho là x1, x2. Tìm m để biểu thức A=\(\left(\frac{x1}{x2}\right)^3-\left(\frac{x2}{x1}\right)^3\)đạt GTLN
Cho a,b,c>0 thỏa mãn \(a+b+c\le3\)
Chứng minh \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}+\frac{1}{\left(2b+c\right)\left(2a+c\right)}+\frac{1}{\left(2c+a\right)\left(2b+a\right)}\ge\frac{3}{\left(a+b+c\right)^2}\)
chứng minh rằng nếu phương trình \(ax^2+bx+c=x\left(a\ne0\right)\)vô nghiệm thì phương trình \(a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=x\)cũng vô nghiệm
Cho các số thực a, b, c > 0. Chứng minh rằng :
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\ge\frac{1}{3}\)
Cho a,b,c là các số dương, chứng minh rằng:
\(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(c+a\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le3\)
Cho phương trình sau \(2x^2+\left(m-1\right)x-2=\)0
a/ Chứng minh phương trình luôn có 2 nghiệm x1 và x2
b/ Tìm m để \(\left(x_1+\frac{1}{2}x^2_1-x^3_1\right)\)\(\left(x_2+\frac{1}{2}^2_2-x^3_2\right)=4\)
cho a,b,c>0 thỏa mãn a+b+c=3. chứng minh rằng: \(\left(abc\right)^2\left(a^2+b^2+c^2\right)\le3\)
Cho a, b, c > 0. Chứng minh rằng:\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(a+2b+c\right)^2}+\frac{1}{\left(a+b+2c\right)^2}\le\frac{9}{16\left(ab+bc+ca\right)}.\)
Giúp tớ bài này plz, khó quá:
Xét các số thực a,b,c với \(b\ne a+c\) sao cho phương trình bậc 2 \(ax^2+bx+c=0\)có 2 nghiệm thực m,n thỏa mãn \(0\le m,n\le1\).Tìm GTLN và GTNN của biểu thức:
\(M=\frac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)