phương trình có a = 7 khác 0 => là phương trình bậc 2
vậy phương trình có nghiệm <=> \(\Delta'\ge0\Leftrightarrow\left(m-1\right)^2-7.\left(-m^2\right)\ge0\Leftrightarrow\left(m-1\right)^2+7m^2\ge0\)(thỏa mãn với mọi m)
b) theo vi et ta có
+) x1+x2 = -b/a = 2(m-1)/7
+) x1.x2 = c/a = -m2/7
a) Ta có : a = 7 ; b = 2(m-1) ; c = -m2
\(\Rightarrow\Delta'=\left(m-1\right)^2+7m^2\)
Do \(\left(m-1\right)^2\ge0\)mọi m và \(m^2\ge0\)mọi m
\(\Rightarrow\Delta'\ge0\)với mọi giá trị của m
Do đó PT có nghiệm với mọi giá trị của m
b) Gọi 2 nghiệm của PT là x1 ; x2
Theo định lí Vi-ét , ta có : \(\hept{\begin{cases}x_1+x_2=\frac{-2\left(m-1\right)}{7}\\x_1.x_2=\frac{-m^2}{7}\end{cases}}\)
Khi đó : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2.x_1.x_2\)
\(=\left[\frac{-2\left(m-1\right)}{7}\right]^2-2.\frac{-m^2}{7}\)
\(=\frac{4\left(m-1\right)^2}{49}+\frac{2m^2}{7}\)
\(=\frac{4m^2-8m+4+14m^2}{49}\)
\(=\frac{18m^2-8m+4}{49}\)