Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quyền Chí Long

Cho phương trình 7x^2 + 2(m-1)x - m^2 = 0

a) Với giá trị nào của m thì phương trình có nghiệm?

b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-ét, hãy tính tổng các bình phương hai nghiệm của phương trình theo m

Ngô Văn Tuyên
10 tháng 4 2016 lúc 22:54

phương trình có a = 7 khác 0 => là phương trình bậc 2

vậy phương trình có nghiệm <=> \(\Delta'\ge0\Leftrightarrow\left(m-1\right)^2-7.\left(-m^2\right)\ge0\Leftrightarrow\left(m-1\right)^2+7m^2\ge0\)(thỏa mãn với mọi m)

b) theo vi et ta có

+) x1+x2 = -b/a = 2(m-1)/7

+) x1.x2 = c/a = -m2/7

Huy Hoang
22 tháng 1 2021 lúc 21:21

a) Ta có : a = 7 ; b = 2(m-1) ; c = -m2

\(\Rightarrow\Delta'=\left(m-1\right)^2+7m^2\)

Do \(\left(m-1\right)^2\ge0\)mọi m và \(m^2\ge0\)mọi m

\(\Rightarrow\Delta'\ge0\)với mọi giá trị của m

Do đó PT có nghiệm với mọi giá trị của m

b) Gọi 2 nghiệm của PT là x1 ; x2

Theo định lí Vi-ét , ta có : \(\hept{\begin{cases}x_1+x_2=\frac{-2\left(m-1\right)}{7}\\x_1.x_2=\frac{-m^2}{7}\end{cases}}\)

Khi đó : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2.x_1.x_2\)

\(=\left[\frac{-2\left(m-1\right)}{7}\right]^2-2.\frac{-m^2}{7}\)

\(=\frac{4\left(m-1\right)^2}{49}+\frac{2m^2}{7}\)

\(=\frac{4m^2-8m+4+14m^2}{49}\)

\(=\frac{18m^2-8m+4}{49}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Huy Jenify
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
klookl
Xem chi tiết
loi phan
Xem chi tiết