\(5x^2-6x-2=0\)
\(\Delta'=\left(-6\right)^2-4\cdot5\cdot\left(-2\right)=76>0\)
=> Phương trình có 2 nghiệm
Theo Viet, ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{6}{5}\\x_1x_2=\frac{c}{a}=\frac{-2}{5}\end{cases}}\)
Vậy: ...
\(5x^2-6x-2=0\)
\(\Delta'=\left(-6\right)^2-4\cdot5\cdot\left(-2\right)=76>0\)
=> Phương trình có 2 nghiệm
Theo Viet, ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{6}{5}\\x_1x_2=\frac{c}{a}=\frac{-2}{5}\end{cases}}\)
Vậy: ...
cho phương trình 2x^2-6x-3=0 không giải phương trình hãy tính x1,x2 với a=x1^2 x2^2-2x1-2x2
Cho phương trình: 3x2 – 5x – 6 = 0 có 2 nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của biểu thức sau: A=1-( \(\dfrac{x1-x2}{x1x2}\))2
Cho phương trình: 3x2 – 5x – 6 = 0 có 2 nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của biểu thức sau :
ho phương trình 2x^2-6x-3=0 không giải phương trình hãy tính x1,x2 với B=3x1x2-x1^2-x2^2
Cho phương trình 2x^2+5x-1=0
Không tính bằng cách giải phương trình, hãy tính giá trị biểu thức A=x1^2-2x1-2x2+x2^2
Tổng là -5/2 tích là -1/2
Cho phương trình 2x^2 - 6x +3 =0
a) chứng tỏ phương trình trên có 2 nghiệm phân biệt x1 x2
b) Không giải phương trình để tìm 2 nghiệm x1, x2, hãy tính giá trị của biểu thưc A= 2x1 +x1.x2 +2x2 phần x12 .x2 +x1.x22
Cho phương trình x^2-6x+4=0 có 2 nghiem X1,X2.không giải phương trình. Tính C=-|X1-X2|
Cho phương trình x^2-2x-5=0 có 2 nghiệm x1,x2. Không giải phương trình, hãy tính giá trị của các biểu thức : B=x1^2+x2^2 ; C=x1^5+x2^5
Gọi x1, x2 là hai nghiệm của phương trình: 3x2 + 5x – 6 = 0.
Không giải phương trình, hãy tính giá trị biểu thức sau: \(\dfrac{x1}{x2-1}\)+\(\dfrac{x2}{x1-1}\)