PTHĐGĐ là:
1/2x^2+x-m=0
Δ=1^2-4*1/2*(-m)=1+2m
Để (d) tiếp xúc (P) thì 2m+1=0
=>m=-1/2
=>1/2x^2+x+1/2=0
=>x^2+2x+1=0
=>x=-1
=>y=1/2*(-1)^2=1/2
PTHĐGĐ là:
1/2x^2+x-m=0
Δ=1^2-4*1/2*(-m)=1+2m
Để (d) tiếp xúc (P) thì 2m+1=0
=>m=-1/2
=>1/2x^2+x+1/2=0
=>x^2+2x+1=0
=>x=-1
=>y=1/2*(-1)^2=1/2
Cho parabol (P) : y = \(\dfrac{1}{2}x^2\)và đường thẳng d:y=-x+m
a. Tìm m để d tiếp xúc với (P). Tìm tọa độ tiếp điểm
Trong nửa mặt phẳng tọa độ Oxy cho đường thẳng (d): \(y=2x+m^2+m-3\) và parabol (P): y=\(x^2\). Tìm GT nguyên dương của m để (d) tiếp xúc với (P) và khi đó hãy tìm tọa độ tiếp điểm của (d) và (P)
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n. Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
Mn ơi giúp em với ạ 😭😭😭 Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d:y=x+m−1(m là tham số) và parabol (P):y= x²/2 1. Xác định tọa độ điểm A trên parabol (P) có hoành độ x=2. Tìm m để đường thẳng d đi qua điểm A. 2. Tìm m để đường thẳng d cắt parabol (P) tại hai điểm M(x;2), N(x;y) phân biệt nằm về hai phía của trục tung và có tung độ thỏa mãn: 2y1+ y2=12.
Cho parabol (P):y=x2 và đường thẳng (d):y=2x+m
a) Vẽ (P) và (d) trên cùng mặt phẳng tọa độ với m=3. Tìm tọa độ giao điểm của (d) và (P) (bằng lập luận và bằng đồ thị)
b) Tìm m để (d) tiếp xúc với (P). Xác định tọa độ tiếp điểm
Cho parabol (P) y=x2 và đường thẳng (d) y=2(m-1)x + 2m-5
Tìm các giá trị của m để (d) tiếp xúc (P) và tọa độ tiếp điểm của (d) và (P) ứng với các giá trị của m vừa tìm được
Trong mặt phẳng tọa độ Oxy, cho parabol (p) : y=\(-\dfrac{x^2}{2}\)và đường thẳng (d): y=x+m
a) Tìm tọa độ điểm M thuộc parabol (P) biết điểm M có tung độ bằng -2
b,Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm A\(\left(x_1,M_1\right)\),B\(\left(x_2,y_2\right)\)
phân biệt thỏa mãn \(x_1x_2+x_1+x_2=10\)
giúp mk câu này với ạ
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x 2 và đường thẳng (d): y = 2x + m (m là tham số).
a) Xác định m để đường thẳng (d) tiếp xúc với parabol (P). Tìm hoành độ tiếp điểm.
Tìm m để parabol (P) y=\(\frac{3}{2}x^2\) và đường thẳng (d):y=2x+m tiếp xúc nhau.Tìm tọa độ tiếp điểm.