Cho p và q là các số nguyên tố lớn hơn 3. Chứng minh p^2-q^2 chia hết cho 24
Bài 1: cho a,b,c là số nguyên tố lớn hơn 3. Chứng minh (a-b(b-c)(c-a) chia hết cho 48.
Bài 2: cho các số nguyên dương a,b,c sao cho (a-b)(b-c)(c-a)=a+b+c. Chứng minh a+b+c chia hết cho 27.
Bài 3: Chứng minh rằng với mọi số nguyên tố lớn hơn p>3 thì 2018-2p^4 chia hết cho 96.
mọi người ơi giúp mình bài này với
bài 1 :CMR giữa hai số hữu tỉ không âm là vô số số hữu tỉ không âm
bài 2: cho p và q là những số nguyên tố lớn hơn 3 , chứng tỏ rằng:
a) p^2 - 1 chia hết cho 24
b) p^2 - q^2 chia hết cho 24
Chứng minh rằng nếu p và (p+2) là hai số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12
1,cho a và b là hai số tự nhiên nguyê tố cùng nhau với 3 và a+b chia hết cho 3. chứng minh rằng xa +xb+1 chia hết cho x2+x+1
2,cho f(x) là đa thức bậc lớn hơn 1 có các hệ số nguyên, m và n là hai số nguyên tố cùng nhau, chứng minh rằng
f( m+n) chia hết cho mn <=> f(m) chia hết cho n và f(n) chia hết cho m
ai làm hộ mik đi... nhanh dùm với các chế
Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.
chứng minh rằng với p là số nguyên tố lớn hơn 3 ta có 2p-1 chia hết cho 24