Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trần thị kim thư

cho P= \(\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\) \(.\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\) . \(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)
a, đkxđ
b,rút tính gọn 
c,tính gtbt tại a = \(\sqrt{2+\sqrt{2}}\)  

Akai Haruma
28 tháng 8 2021 lúc 10:24

Lời giải:
a. ĐKXĐ: $a\geq 0; a\neq 1$

b.

\(P=\left[\frac{\sqrt{a}(\sqrt{a}+1)}{\sqrt{a}+1}+1\right].\left[\frac{\sqrt{a}(\sqrt{a}-1)}{\sqrt{a}-1}-1\right].\frac{\sqrt{2}(\sqrt{2}-1)}{\sqrt{2}-1}\)

\(=(\sqrt{a}+1)(\sqrt{a}-1).\sqrt{2}=\sqrt{2}(a-1)\)

c.

\(P=\sqrt{2}(\sqrt{2+\sqrt{2}}-1)=\sqrt{4+2\sqrt{2}}-\sqrt{2}\)

Nhan Thanh
28 tháng 8 2021 lúc 10:24

a. ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{a}\ge0\\\sqrt{a}-1\ne0\\\sqrt{a}+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\\sqrt{a}\ne1\\\sqrt{a}\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

b. \(P=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right).\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)

\(=\left[\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right].\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right].\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\left(\sqrt{a}+1\right).\left(\sqrt{a}-1\right).\sqrt{2}=2\left(a-1\right)=2a-2\)

 

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 14:59

a: ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

b: Ta có: \(P=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\cdot\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\cdot\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)

\(=\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)\cdot\sqrt{2}\)

\(=\sqrt{2}a-\sqrt{2}\)

Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 0:35

c: Thay \(a=\sqrt{2+\sqrt{2}}\) vào P, ta được:

\(P=\sqrt{4+2\sqrt{2}}-\sqrt{2}\)


Các câu hỏi tương tự
trần thị kim thư
Xem chi tiết
hoàng
Xem chi tiết
Ngọc Mai
Xem chi tiết
Đặng Thiên Bảo
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
phamductoan
Xem chi tiết
Sun ...
Xem chi tiết
Oriana.su
Xem chi tiết
minh
Xem chi tiết