Cho hai mặt phẳng P : x + 2 y - z + 1 = 0 ; Q : x - 2 y + z - 4 = 0 . Biết ∆ = P ∩ Q , tìm một vectơ chỉ phương v → của ∆ .
Cho hai mặt phẳng P : 2 x + 3 y - z - 1 = 0 , Q : x + 2 y - z + 1 = 0 . Biết d = P ∩ Q . Tìm một vectơ chỉ phương của (d)
Cho P : x + y - z - 1 = 0 và Q : - 2 x + z + 4 = 0 và A - 1 ; 1 ; 3 . Gọi α là mặt phẳng qua A, α ⊥ P , α ⊥ Q . Tìm một vectơ pháp tuyến n → của α .
Cho hai mặt phẳng P : 2 x - y + z + 1 = 0 và Q : x + y + 2 z + 2 = 0 . Gọi d = P ∩ Q . Viết phương trình (d)
Cho P : x - y + 2 z + 1 = 0 ; Q : 2 x + y - z - 1 = 0 . Gọi ∆ = P ∩ Q . Viết phương trình đường thẳng ∆ .
Trong không gian Oxyz, cho hai mặt phẳng (P): x - 2y - z + 3 = 0,
(Q): 2x + y + z - 1 = 0. Mặt phẳng (R) đi qua điểm M(1;1;1) và chứa
giao tuyến của (P) và (Q).
Phương trình của (R): m.(x - 2y - z + 3) + (2x + y + z -1) = 0. Khi đó giá trị của m là
A. 3
B. 1 3
C. -1
D. -3
Trong không gian Oxyz, cho hai mặt phẳng (P): x - 2y - z + 3 =0, (Q): 2x + y + z - 1= 0, . Mặt phẳng R đi qua điểm M(1;1;1) và chứa giao tuyến của (P) và (Q); phương trình của (R): m.(x-2y-z+3) + (2x+y+z-1). Khi đó giá trị của m là
A. 3
B. 1 3
C. - 1 3
D. 3
Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P):x+y+z+1=0, (Q):x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng đi qua A, song song với (P) và (Q)?
A. x = - 1 + t y = 2 z = - 3 - t
B. x = 1 y = - 2 z = 3 - 2 t
C. x = 1 + 2 t y = - 2 z = 3 + 2 t
D. x = 1 + t y = - 2 z = 3 - t
Cho P : x + y - z + 1 = 0 ; d : x + 3 1 = y + 5 - 1 = z - 7 2 . Gọi d ' là hình chiếu vuông góc của (d) xuống (P); xác định vectơ chỉ phương của d'.