cho AB là đường kính của đường tròn ( O;R) , C là một điểm thay đổi trên đường tròn ( C khác A và B ) , kẻ CH vuông góc với AB tại H . Gọi I là trung điểm của AC ; OI cắt tiếp tuyến tại A của đường tròn ( O ; R) tại M ; MB cắt CH tại K
a , chứng minh 4 điểm C;H;O;I cùng thuộc một đường tròn
b , chứng minh MC là tiếp tuyến của ( O;R)
c, chứng minh K là trung điểm của CH
d, xác định vị trí của điểm C để chu vi tam giác ACB đạt giá trị lớn nhất ? tìm giá trị lớn nhất đó theo R
cho AB là đường kính của đường tròn (O;R). C là một điểm thay đổi trên đường tròn (C khác A và B), kẻ CH vuông góc với AB tại H. Qua A kẻ đường thẳng xy vuông góc với AB. Gọi I là trung điểm của AC, OI cắt đường thẳng xy tại M, MB cắt CH tại K.
a) Chứng minh MC vuông góc với OC
b) Chứng minh K là trung điểm của CH
c) Xác định vị trí của C để chu vi tam giác ACB đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó theo R.
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất
Cho AB là đường kính của đường tròn (O;R).C là một điểm thay đổi trên đường tròn( C khác A và B) , kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của AC, OI cắt tiếp tuyến tại A của đường tròn (O;R) tại M, MB cắt CH tại K
a: CM 4 điểm C,H,O,I cùng thuộc một đường tròn
b: CM: MC là tiếp tuyến của (O;R)
c: CM: K là trung điểm của CH
d: Xác định vị trí của C để chu vi tam giác ACB đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó theo R
Cho AB là đường kính của đường tròn (O;R). C là một điểm thay đổi trên đường tròn ( C khác A và B), kẻ CH vuông góc với AB tại H .Gọi I là trung điểm của AC, OI cắt tiếp tuyến tại A của đường tròn (O;R) tại M, MB cắt CH tại K.
a) Chứng minh 4 điểm C,H,O,I cùng thuộc một đường tròn
b) Chứng minh MC là tiếp tuyến của (O;R)
c) Chứng minh K là trung điểm của CH
d) Xác định vị trí của C để chu vi tam giác ACB đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó theo R
đang cần gấp mn giải lẹ giùm mình
cho đường tròn tâm O, đường kính AB và một điểm C di động trên AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F.
a) chứng minh tứ giác MECF là hcn và EF là tiếp tuyến chung của (I) và (K)
b) cho AB=4cm, xác định điểm C trên AB để diện tích tứ giác IEKF là lớn nhất
c) khi C khác O đường tròn ngoại tiếp hcn MECF cắt đường tròn (O) tại P ( khác M), đường thẳng PM cắt AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN.
d) chứng minh 3 điểm N,E,F thẳng hàng.
1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với
Cho đường tròn tâm O đường kính BC, A là một điểm thuộc đường tròn. H là hình chiếu của A trên BC. Vẽ đường tròn (I) có đường kính AH, cắt AB và AC theo thứ tự ở M và N.
a) Chứng minh rằng OA vuông góc với MN.
b) Vẽ đường kính AOK của đường tròn (O). Gọi E là trung điểm của HK. Chứng minh rằng E là tâm của đường tròn ngoại tiếp tứ giác BMNC.
c) Cho BC cố định. Xác định vị trí của điểm A để bán kính của đường tròn ngoại tiếp tứ giác BMNC lớn nhất.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, BC khác đường kính nằm cố định trên đường tròn, A thay đổi trên cung lớn BC. Tìm ra vị trí của điểm A sao cho:
a, Diện tích tam giác ABC đạt giá trị lớn nhất
b, Chu vi tam giác ABC đạt giá trị lớn nhất