cho (O;R) đường kính AB lấy M thuộc O sao cho cung MA nhỏ hơn cung MB; A khác B a) chứng minh tam giác MAB vuông b) trên tia đối của MA lấy E sao cho MA=ME EB cắt O tại C chứng minh EMxEB=AExEC c) F đối xứng với C qua M chứng minh FE là tiếp tuyến của (B;BA)
cho (O;R) đường kính AB lấy M thuộc O sao cho cung MA nhỏ hơn cung MB; A khác B a) chứng minh tam giác MAB vuông b) trên tia đối của MA lấy E sao cho MA=ME EB cắt O tại C chứng minh EMxEB=AExEC c) F đối xứng với C qua M chứng minh FE là tiếp tuyến của (B;BA)
cho (O;R) đường kính AB lấy M thuộc O sao cho cung MA nhỏ hơn cung MB; A khác B a) chứng minh tam giác MAB vuông b) trên tia đối của MA lấy E sao cho MA=ME EB cắt O tại C chứng minh EMxEB=AExEC c) F đối xứng với C qua M chứng minh FE là tiếp tuyến của (B;BA)
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
Cho đường tròn (O; R), dây CD khác 2R cố định. Trên tia đối của tia CD lấy điểm M. Từ M kẻ hai tiếp tuyến MA, MB ( A; B thuộc đường tròn, A thuộc cung lớn CD). Đoạn thẳng OM cắt AB tại E, cắt đường tròn tại F.
a) Chứng minh tứ giác AOBM nội tiếp.
b) Chứng minh: MA2=MC. MD
c) Chứng minh điểm F cách đều 3 cạnh của tam giác ABM.
d) Chứng minh góc CED không đổi khi M chuyển động trên tia đối của tia CD.
Cho đường tròn (O) bán kính R và điểm M nằm ngoài đường tròn sao cho OM=2R. Qua M vẽ 2 tiếp tuyến MA, MB với đường tròn OM cắt AB tại H. a, Chứng minh OM vuông góc AB b, Chứng minh tam giác MAB là tam giác đều c, Qua điểm P bất kì thuộc cung nhỏ AB, vẻ tiếp tuyển thứ 3 cắt MA, BM lần lượt tại C,D. Tính chu vi tam giác MCD theo R. d, Tính số đo góc COD.
Giúp mình giải với ạ, mình cảm ơn nhiều.
Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.
d) ME cắt đường tròn (O) tại F (khác E). Chứng minh: ∠(MOF) = ∠(MEH )
Cho đường tròn (O;R) đường kính AB. Trên AB lấy T,S đối xứng nhau qua O (OT<R). Lấy M thuộc cung AB, MA<MB. MT;MO;MS cắt (O) tại C,E,D. CD cắt AB tại F. Qua D kẻ đt song song AB cắt ME tại K, MC tại N. kẻ OH vuông góc CD. Chứng minh:
a, KN=KD
b, tg HKDE nội tiếp
,EF là tiếp tuyến (O) và EF2=FC.FD
Cho tam giác MAB vuông tại M,MB<MA,kẻ MH vuông góc với AB (H thuộc AB).Đường tròn (O) đường kính MH cắt MA,MB lần lượt tại E và F (E,F khác M)
a) đường thẳng EF cắt đường tròn (O') ngoại tiếp tam giác MAB tại P và Q (P thuộc cung MB). Chứng minh tam giác MPQ cân
b)Gọi I là giao điểm thứ 2 của đường tròn (O) với (O') .Đường thẳng EF cắt đường thẳng AB tại K .Chứng minh M,I,K thẳng hàng