Cho đường tròn tâm O đường kính AB. Vẽ hai dây AM và BN song song với nhau sao cho sđ B M ⏜ < 90°. Vẽ dây MD song song với AB. Dây DN cắt AB tại E. Từ R vẽ một đường thẳng song song với AM cắt đường thẳng DM tại C. Chứng minh:
a, AB ⊥ DN
b, BC là tiếp tuyến của đường tròn (O)
Cho đường tròn (O) đường kính AB. Vẽ 2 dây AM và BN song song sao cho sđ cung BM<90 độ. Vẽ dây MD song song với AB. Dây DN cắt AB tại F. Từ R vẽ 1 đường thẳng song song với AM cắt DM tại C. Chứng minh:
a, AB vuông góc DN
b, BC là tiếp tuyến của (O)
Cho đường tròn tâm O , đường kính AB . Dây AM và BN song song với nhau sao cho sđ cung BM < 900900 . Vẽ dây MD // AB , dây DN cắt AB tại E . Từ E vẽ một đường thẳng song song với AM cắt đường thẳng DM tại C . Chứng minh:
a. AB ⊥ DN
b. BC là tiếp tuyến đường tròn (O)
cho đường tròn (O) đường kính AB.Vẽ hai dây AM và BN song song với nhau sao cho số đo cung BM<90 độ .Vẽ dây MD//AB.Dây DN cắt AB tại E.Từ E vẽ một đường thẳng song song với AM cắt đường thẳng DM tại C.Chứng minh rằng:
a.AB vuông góc DN
b.BC là tiếp tuyến của (O)
Cho đường tròn (O) , đường kính AB .Vẽ 2 dây AM và BM song song với nhau sao cho sđ cung BM < 90. . Vẽ dây MD song song với AB . Dây AN cắt AB tại E . Đường thẳng qua E song song với AM cắt DM tại C . Chứng minh rằng
a) Cung AD = cung AN và AB \(\perp\)DN
b) BC là tiếp tuyến của (O)
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh ED^2=EC.EB
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M và N. Chứng minh DM=DN
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OH vuông góc với BC
a/ Chứng minh tứ giác OHDE nội tiếp
b/ Chứng minh ED^2=EC.EB
c/ Từ C vẽ đường thẳng song song với EO cắt AD tại I. Chứng minh HI song song với AB
d/ Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M nà N. Chứng minh DM=DN
Cho tam giác ABC cân tại A \(\left(\widehat{A}< 90^o\right)\)nội tiếp đường tròn (O). Gọi D là điểm trên cung AB không chứa C (D khác A và B). Hai dây AD và BC kéo dài cắt nhau tại E. Đường thẳng qua E và song song với CD cắt AB kéo dài tại F. Vẽ tiếp tuyến FG với đường tròn (O) (G là tiếp điểm)