a: Xét tứ giác ACID có
E là trung điểm của CD
E là trung điểm của AI
Do đó: ACID là hình bình hành
mà AI⊥CD
nen ACID là hình thoi
a: Xét tứ giác ACID có
E là trung điểm của CD
E là trung điểm của AI
Do đó: ACID là hình bình hành
mà AI⊥CD
nen ACID là hình thoi
cho (O) đường kính AB gọi E thuộc AO. kẻ dây CD vuông oA tại E.Lấy I đối xứng với A qua E
a)Tứ giác ACID là hình gì
b) Tiếp tuyến tại C cắt OA tại M.CM MD là tiếp tuyến của (O)
c)CM DI vuông CB tại K
d)CM EK là tiếp tuyến với đường tròn đường kính BI
Cho đường tròn (O; 15 cm) đường kính AB, lấy điểm I thuộc AO sao cho AI= 5cm. Vẽ dây CD vuông góc với OA tại I. Gọi E là điểm đối xứng vớ A qua I. Các tiếp tuyến với (O) tại C và D cắt nhau tại M.
a/ Tính độ dài CD?
b/ Tứ giác ECAD là hình gì?
c/ chứng minh M,A,B thẳng hàng
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho đường tròn (O; 15 cm) đường kính AB, lấy điểm I thuộc AO sao cho AI= 5cm. Vẽ dây CD vuông góc với OA tại I. Gọi E là điểm đối xứng vớ A qua I. Các tiếp tuyến với (O) tại C và D cắt nhau tại M.
a/ Tính độ dài CD?
b/ Tứ giác ECAO là hình gì?
c/ chứng minh M,A,B thẳng hàng
Cho đường tròn (O;R) dây AB khác đường kính. Qua O vẽ đường thẳng vuông góc với AB tại H, cắt tiếp tuyến tại A của đường tròn ở O
a) CM: CB là tiếp tuyến của đường tròn (O)
b) kẻ đường thẳng qua A song song với CO cắt đường tròn (O) tại D. Vẽ AK vuông góc với BD. CM: 3 điểm BOD thẳng hàng và tam giác AKD đồng dạn với tam giác CAO
c) Đường thẳng CO cắt (O) tại hai điểm M và N, (M nằm giữa C và N). CM: MC.NH=MH.NC
cho đường tròn (O;R) đường kính AB. Lấy điểm H thuộc đoạn OA. Kẻ dây cung CD vuông góc với AB tại H.
c. tiếp tuyến tại A của đg tròn (O) cắt tia BC tại E. Gọi I là trung điểm của EA. chứng minh IC là tiếp tuyến của đg tròn (O).cho đường tròn (O;R) đường kính AB. Lấy điểm H thuộc đoạn OA. Kẻ dây cung CD vuông góc với AB tại H.
a. chứng minh tam giác ABC vuông tại C, tính độ dài AC biết OH bằng 1cm, R bằng 5 cm
b. chứng minh AC.BC bằng CD.OC..
giup em voi
cho nửa đường tròn (o) đướng kính AB=2R và dây cung AC=R. gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D.
a, CMR Δ∆ABC vuông.
b, CMR DC là tiếp tuyến của đường tròn (O).
c, tia OD cắt (O) tại M. CM tứ giác OBMC là hình thoi.
d, vẽ CH vuông góc vs AB tại H và gọi I là trung điểm của cạnh CH. tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E.CMR E,C,D thẳng hàng
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.