Cho (O) đường kính AB, lấy C thuộc (O), kẻ OH vuông góc BC tại H, tia OH cắt
tiếp tuyến tại B ở E. Gọi D là giao điểm của OE với (O), M là giao điểm của AD
với BC.
b) Chứng minh: EC là tiếp tuyến của (O)
c) Chứng minh: AD là phân giác của CAB
Cho nửa (O) đường kính AB, C thuộc (O), kẻ OH vuông góc BC, OH cắt tiếp tuyến tại B ở E. Gọi D là
giao điểm của OE với (O), M là giao điểm của AD với BC.
a)Chứng minh: H là trung điểm của BC.
b)Chứng minh: EC là tiếp tuyến của (O).
c)AD cắt BE tại I, IH cắt BD tại K. Chứng minh: KH.BI=IK.BH
Giúp mình câu c nhé!
Cho (O) đường kính AB, lấy C thuộc (O), kẻ OH vuông góc BC tại H, tia OH cắt
tiếp tuyến tại B ở E. Gọi D là giao điểm của OE với (O), M là giao điểm của AD
với BC.
b) Chứng minh: EC là tiếp tuyến của (O)
c) Chứng minh: AD là phân giác của CAB
Cho đường tròn (O), từ điểm A ngoài (O) vẽ hai tiếp tuyến AB, AC (B, C là hai tiếp điểm). Gọi H là giao điểm OA và BC. Vẽ đường kính BD của (O). Đường thẳng qua C vuông góc với AB cắt OA tại M, I là trung điểm OC. Đường thẳng vuông góc với BD tại D cắt BC tại E. Chứng minh OE vuông góc AD
Cho(O,R) đường kính AB và dây AC không đi qua O. Gọi Hlaf trung điểm của AC a) tính góc ACB và chứng minh OH//BC b) Tiếp tuyến tại C của (O) cawts tia OH ở M. C/m: đường thẳng MA là tiếp tuyến tại A của (O) c) kẻ CK vuông góc AB tại K. Gọi I là trung điểm của CK và đặt góc CAB=α. Chứng minh Ck=2R.sinα d) Chứng minh M,I,B thẳng hàng
Cho đường tròn (O;R) có đường kính AB, lấy điểm C trên đường tròn sao cho góc AOC là góc tù, vẽ OH vuông góc với AC tại H tiếp tuyến tại A của đường tròn cắt OH tại D. DB cắt đường tròn tại E. Gọi F là ttrung điểm của BE
a, Cm DC là tiếp tuyến của đường tròn và điểm A, D, C, F, O cùng thuộc 1 đường tròn
b, Cm DA2 = DE.DB và góc EHD = góc EBO
c. CHứng minh HC là tia phân giác góc EHB
d. Tiếp tuyến tại B của (O) cắt tia AC tại K. Chứng minh ba điểm O, F,K thẳng hàng .
AI GIÚP EM VỚI Ạ
Cho đường tròn (O) và đường thẳng d không giao với (O). Kẻ OH vuông góc với d tại H. Trên d lấy một điểm A và kẻ tiếp tuyến AB với (O) ( B là tiếp điểm) sao cho A và B nằm cùng nửa mặt phẳng bờ là đường thẳng OH. Gọi E là giao điểm của BH với (O). Chứng minh:
a/Tứ giác OBAH nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác trên.
b/ góc BOE = 2 góc AOH
c/Đặt OA = a. Tiếp tuyến của (O) tại E cắt d tại C. Tính OC theo a.
cho đường tròn tâm o bán kính r và một điểm M nằm ngoài đường tròn . Qua M kẻ tiếp tuyến MA với đường tròn ( A là tiếp điểm ) . Tia Mx là phân giác của góc AMO cắt đường tròn (O;R) tại hai điểm C và D ( C nằm giữa 2 điểm M và D ). Gọi I là trung điểm của dây CD ,kẻ AH vuông góc với MO tại H.
a) Tính OH, OM theo R ;
b) gọi E là trung điểm của OM. Chứng minh điểm M,A,I,O cùng thuộc một đường tròn ;
c) gọi K là giao điểm của OE và HA. Chứng minh rằng KC là tiếp tuyến của (O;R)
Cho đường tròn (O) đường kính AB,E thuộc đoạn AO ( E khác A,O và AE > EO ) , Gọi H là trung điểm của AE , kẻ dây CD vuông góc với AE tại H.
a) Tính góc ACB ?
b) Tứ giác ACED là hình gì ?
c) Gọi I là giao điểm của DE và BC . Chứng minh HI là tiếp tuyến của đường tròn đường kính EB ?