a: góc AMB=1/2*180=90 độ
góc HMB+góc HCB=180 độ
=>HMBC nội tiếp
góc ACD=góc AMD=90 độ
=>ACMD nội tiếp
b: Xét ΔCAH vuông tại C và ΔCDB vuông tại C có
góc CAH=góc CDB
=>ΔCAH đồng dạng với ΔCDB
=>CA/CD=CH/CB
=>CA*CB=CH*CD
a: góc AMB=1/2*180=90 độ
góc HMB+góc HCB=180 độ
=>HMBC nội tiếp
góc ACD=góc AMD=90 độ
=>ACMD nội tiếp
b: Xét ΔCAH vuông tại C và ΔCDB vuông tại C có
góc CAH=góc CDB
=>ΔCAH đồng dạng với ΔCDB
=>CA/CD=CH/CB
=>CA*CB=CH*CD
Cho nửa đường tròn tâm O có đường kính AB. Lấy điểm C trên đoạn AO. Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung KB. Đường thẳng CK cắt các đường thẳng AM, BM lần lượt tại H, D. Đường thẳng BH cắt nửa đường tròn tại N
a. CM: ACMD nội tiếp
b. CA.CB=CH.CD
c. CM: A,N,D thẳng hàng và tiếp tuyến N đi qua trung điểm DH
d. Khi M di động trên cung KB, c/m đt MN luôn đi qua 1 điểm cố định.
Cho nửa (O) đường kính AB. Lấy C trên đoạn OA. Đường thẳng đi qua C vuông góc với AB cắt nửa đường tròn tại K. M là điểm bất kì trên cung BK. CK cắt AM tại H, CK cắt BM tại D. BH cắt nửa đường tròn tại N
a) cm ACMD và CHMB là tứ giác nội tiếp
b) cm CA.BC=CD.CH
c) cm A,D.N thẳng hàng
d) Tiếp tuyến tại N đi qua trung điểm của DH
Cho nửa đường tròn tâm O có đường kính AB. Lấy điểm C trên đoạn thẳng AO ( C khác A, C khác O ). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung KB ( M khác K, M khác B). Đường thẳng CK cắt đường thẳng AM, BM lần lượt tại H và D. Đường thẳng BH cắt nửa đường tròn tại N.
a) Cm tứ giác ACMD nội tiếp
b) Cm 3 điểm A,N,D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của HD
3) Khi M di động trên cung KB, chứng minh đường thẳng MN luôn đi qua 1 điểm cố định
Giúp mình phần c) nha
Cho nửa đường tròn tâm (O) có đường kính AB.lấy điểm C trên đoạn thẳng AO (C khác A, C khác O). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung AB ( M khác K, M khác B). Đường thẳng CK cắt các đường thẳng AM,BM lần lượt tại H và D. Đường thẳng BH cắt nửa đường tròn tại điểm thứ hai N
a) chứng minh: ACMD nội tiếp
b) chứng minh: CA.CB= CH.CD
c) Chứng minh; ba điểm A,N,D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của DN
d) khi M di chuyển trên cung KB. chứng minh đường thẳng MN luôn đi qua 1 điểm cố định.
Cho nửa đường tròn tâm (O) có đường kính AB.lấy điểm C trên đoạn thẳng AO (C khác A, C khác O). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung AB ( M khác K, M khác B). Đường thẳng CK cắt các đường thẳng AM,BM lần lượt tại H và D. Đường thẳng BH cắt nửa đường tròn tại điểm thứ hai N
a) chứng minh: ACMD nội tiếp
b) chứng minh: CA.CB= CH.CD
c) Chứng minh; ba điểm A,N,D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của DN
d) khi M di chuyển trên cung KB. chứng minh đường thẳng MN luôn đi qua 1 điểm cố định.
Cho nửa đường tròn tâm O đường kính AB. Lấy điểm H cố định trên đoạn OA, đường vuông góc với OA tại H cắt nửa đường tròn tại C. Gọi N là trung điểm của BC. M là điểm bất kì thuộc cung nhỏ BC (M ≠ B; M ≠ C). Tia BM cắt HC tại K; AM cắt HC tại E. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác AEK di chuyển trên một đường thẳng cố định khi M di chuyển trên cung nhỏ BC.
Cho nửa đường tròn tâm (O) có đường kính AB.lấy điểm C trên đoạn thẳng AO (C khác A, C khác O). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung AB ( M khác K, M khác B). Đường thẳng CK cắt các đường thẳng AM,BM lần lượt tại H và D. Đường thẳng BH cắt nửa đường tròn tại điểm thứ hai N
a) chứng minh: ACMD nội tiếp
b) chứng minh: CA.CB= CH.CD
c) Chứng minh; ba điểm A,N,D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của DN
d) khi M di chuyển trên cung KB. chứng minh đường thẳng MN luôn đi qua 1 điểm cố định.
làm hộ mk với
GIÚP EM VỚI Ạ
Cho nửa đường tròn tâm O có đường kính AB. Lấy điểm C trên đoạn thẳng AO (C khác A, C khác O). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung KB (M khác K, M khác B). Đường thẳng CK cắt các đường thẳng AM, BM lần lượt tại H và D. Đường thẳng BH căt nửa đường tròn tại điểm thứ hai N. Chứng minh 1) Tứ giác ACMD là tứ giác nội tiếp. 2) CA.CB = CH.CD 3) Ba điểm A, N, D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của DHCho nửa đường tròn tâm (O) đường kính AB = 2R. I là trung điểm của OA, IK vuông góc với AB cắt nửa đường tròn tại K. Điểm C bất kỳ thuộc đoạn IK, AC cắt nửa đường tròn tại M. Tiếp tuyến tại M cắt IK tại N; IK cắt BM tại D. Chứng minh tam giác CMN cân Tính CD theo R trường hợp C là trung điểm của IK. c) Gọi E là điểm đốia xứng của B qua I. Chứng minh khi C chuyển động trên IK thì tâm đường tròn ngoại tiếp ACD di động trên một đường cố định.