b: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
DO đó: CM=CA
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: CM+DM=CD
nên CD=AC+DB
b: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
DO đó: CM=CA
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: CM+DM=CD
nên CD=AC+DB
Cho nửa đường tròn tâm O , đường kính AB . Kẻ các tiếp tuyến Ax , By ( Ax , By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB ) . Một điểm M thuộc nửa đường tròn , qua M kẻ tiếp tuyến của nửa đường tròn cắt Ax , By theo thứ tự tại C và D .
a ) Tính số đo góc AMB ,
b ) Chứng minh CD = AC + BD
c ) Chứng minh CM . MD không đổi
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự ở C và D. Chứng minh rằng:
a) ∠COD = 90o
b) CD = AC + BD
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.
Cho nửa đường tròn tâm O , đường kính AB = 2R , M là một điểm tùy ý trên nửa đường tròn ( M ≠ A ; B ). Kẻ hai tiếp tuyến Ax và By với nửa đường tròn . Qua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D
a) Chứng minh : CD = AC + BD và góc COD = 90 độ
c) OC cắt AM tại R , OD cắt BM tại F . Chứng minh EF = R
d) Tìm vị trí của M để CD có độ dài nhỏ nhất
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự ở C và D, MA cắt OC tại E, MB cắt OD tại F Chứng minh rằng:
a) ∠COD = 90o
b) CD = AC + BD
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.
d) EMFO là hình gì
e) Cm OE*OC=OF*OD
f) Chứng minh AB là tiếp tuyến của đường tròn
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành 2 nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D. Chứng minh rằng :
a)ˆCOD=900COD^=900
b) CD = AC +BD
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn
Cho nửa đường tròn tâm O có đường kính AB . Gọi Ax , By là hai tiếp tuyến vẽ từ A đến B ( Ax , By và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB) . Qua điểm thuộc nửa đường tròn ( M khác A và B ) kẻ tiếp tuyến thứ ba , tiếp tuyến này cắt Ax và By lần lượt tại điểm C và D 1. Chứng minh CD=AC+BD.
2. Gọi N là giao điểm của AD và BC chứng minh MN song song với AC.
cho nửa đường tròn (O) đường kính AB. Gọi Ax,By là các tia vuông góc với AB (Ax,By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB ). Qua điểm M thuộc nửa đường tròn ( M khác A và B ), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax tại C và cắt By tại D
a) CM: CD=AC+BD VÀ COD 90 độ
b) AD cắt BC tại N . CM: MN // BD
c) tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn
d) gọi H là trung điểm của AM. Chứng minh 3 điểm O,H,C thẳng hàng
. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. Chứng minh:
1. AC + BD = CD
2. Góc COD = 900
3. AC.BD = 1/4 AB2
4. OC // BM
5. AB là tiếp tuyến của đường tròn đường kính CD.
6. MN vuông góc AB.
7. Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn , nó cắt Ax và By theo thứ tự ở C và D. Chứng minh rằng:
a) CÔD = 90*
b) CD = AC + BD
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.