Cho nữa đường tròn tâm O đường kính AB=2R. Vẽ tiếp tuyến tại A và tại B với nữa đường tròn là Ax, By. C là điểm nằm trên nửa đường tròn đó ta vẽ tiếp tuyến tại C nó cắt Ax tại D và By tại E. Gọi H là giao điểm của AC và OD, K là giao điểm của BC và OE. a. Chứng minh tứ giác OHCK là hình chữ nhật b. Chứng minh OH.OD + OK.OE= 2OC^2 c. Cho biết OE=2R. Tính CK, CE và tìm diện tích của tứ giác OCEB theo R
a: Xét (O) có
DA,DC là tiếp tuyến
nên DA=DC và OD là phân giác của góc AOC(1)
mà OA=OC
nen OD là trung trực của AC
Xét (O) có
EC,EB là tiếp tuyến
nên EB=EC và OE là phân giác của góc COB(2)
mà OB=OC
nên OE là trung trực của BC
Từ (1), (2) suy ra góc DOE=1/2*180=90 độ
Xét tứ giác CHOK co
góc CHO=góc CKO=góc HOK=90 độ
nên CHOK là hình chữ nhật
b: OH*OD+OK*OE
=OC^2+OC^2
=2*OC^2