Bạn vẽ lại hình và sửa lại đề đi.
Mình làm câu b trước nhé.
Ta có: AM = MC (Tính chất 2 tiếp tuyến cắt nhau tại M)
AO = CO =R
=> OM là đường trung trực của AC
=> OM vuông góc AC
Mà BC vuông góc AC (cm câu a)
= BC // OM
Bạn vẽ lại hình và sửa lại đề đi.
Mình làm câu b trước nhé.
Ta có: AM = MC (Tính chất 2 tiếp tuyến cắt nhau tại M)
AO = CO =R
=> OM là đường trung trực của AC
=> OM vuông góc AC
Mà BC vuông góc AC (cm câu a)
= BC // OM
cho nửa (O) đường kính AB= 2R và tia tiếp tuyến Ax cùng phía vối nửa đường tròn đối với AB . từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm ) .AC cất OM tại E ; MBcats nửa đường tròn tâm O tại D ( D khác B ) . vẽ CH vuông góc với AB (H thuộc AB ) cmr MB đi qua trung điểm của CH
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB.Từ M trên Ax vẽ tiếp tuyến thứ 2 MC với nửa đường tròn ( C là tiếp điểm ) . Kẻ CH vuông góc với AB . Chứng minh : MB đi qua trung điểm của CH .
Cho nửa đường tròn tâm \(O\), đường kính \(AB\) và tia tiếp tuyến \(Ax\) cùng phía với nửa đường tròn đối với \(AB\). Từ điểm \(M\) trên \(Ax\) kẻ tiếp tuyến thứ hai \(MC\) với nửa đường tròn (\(C\) là tiếp điểm). Kẻ \(CH\) vuông góc với \(AB\) \(\left(H\in AB\right)\). Chứng minh rằng:
\(a\)) \(\widehat{ACB}=90^o\)
\(b\)) \(BC//OM\)
\(c\)) \(MB\) đi qua trung điểm của đoạn thẳng \(CH\).
Cho nửa đường tròn đường kính AB và tia tiếp tuyến Ax
cùng phía với nửa đường tròn đối với AB. Từ điểm M trên tia Ax kẻ tiếp tuyến thứ
hai MC với nửa đường tròn, kẻ CH vuông góc với AB.
Chứng minh : MB đi qua trung điểm của CH.
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
Cho nửa đường tròn tâm O bán kínhngs AB= 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. từ điểm M kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh tứ giác AMCOw và AMDE là các tứ giác nội tiếp đương trònng.
b) Chứng minh góc ADE = góc ACO.
c) Kẻ CH vuông góc với AB (H mthuộc AB). Chứng minh MB đi qua trung điểm của CH.
1) Cho đường tròn tâm O đường kính AB. Từ A và B vẽ 2 dây AC và BD cắt nhau tại N. 2 tiếp tuyến Cx, Dy của đường tròn cắt nhau tại M. P là giao điểm 2 đường thẳng AD và BC. Chứng minh:
a) \(PN⊥AB\)
b) P, M, N thẳng hàng.
2) Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn đường kính AH cắt AB, AC lần lượt tại E và F.
Chứng minh \(EF^3=EB.BC.CF\)
3) Cho nửa đường tròn đường kính AB và tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ M trên Ax kẻ tiếp tuyến thứ 2 MC với nửa đường tròn, kẻ CH vuông góc với AB. CMR: MB đi qua trung điểm CH.
cho nửa đường tròn tâm O đường kính AB=2R và tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. từ điểm M trên Ax kẻ tiếp tuyến thứ 2 MC cùng với nửa đường tròn.AC cắt OM tại E. MB cắt nửa đường tròn (O) tại D.
a) giả sử góc CBD=20 độ . tính số đo cung nhỏ DC và số đo góc COD
b) cm góc MAC= góc MOC