a: Xét tứ giác OAMC có
\(\widehat{OAM}+\widehat{OCM}=180^0\)
Do đó: OAMC là tứ giác nội tiếp
a: Xét tứ giác OAMC có
\(\widehat{OAM}+\widehat{OCM}=180^0\)
Do đó: OAMC là tứ giác nội tiếp
cho nửa đường tròn (o) đường kính AB , tiếp tuyến Bx. Qua điểm C trên nửa đường tròn, Kẻ tiếp tuyến với nửa đường tròn cắt Bx tại M. tia AC cắt Bx tại N. a) chứng minh O,B,M,C cùng thuộc 1 đường tròn b) chứng minh OM vuông góc BC
cho nửa đường tròn tâm O đường kính AB=2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm ).AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a, chứng minh AMDE nội tiếp đường tròn.
b, MA^2=MD.MB
Cho đường tròn tâm O bán kính R và điểm A bất kỳ thuộc đường tròn (O). Trên tiếp tuyến tại A của đường tròn (O) lấy một điểm M sao cho MA=2R. Từ M vẽ tiếp tuyến MB với (O) (B là tiếp điểm, B khác A); OM cắt AB tại H
a) Chứng minh tứ giác OAMB là tứ giác nội tiếp và OM vuông góc AB
b) Vẽ đường kính BD của đường tròn (O); MD cắt đường tròn (O) tại E (E khác D).Chứng minh MB2=MA2=ME.MD
c) Tính góc MHE
d) Từ A vẽ AF vuông góc BD (F thuộc BD); tia BE cắt đường thẳng AF tại K.Chứng minh A là trung điểm của KF
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn.
b) Chứng minh : góc ADE=góc ACO
Cho đường tròn (O) bán kính R và điểm M nằm ngoài đường tròn sao cho OM=2R. Qua M vẽ 2 tiếp tuyến MA, MB với đường tròn OM cắt AB tại H. a, Chứng minh OM vuông góc AB b, Chứng minh tam giác MAB là tam giác đều c, Qua điểm P bất kì thuộc cung nhỏ AB, vẻ tiếp tuyển thứ 3 cắt MA, BM lần lượt tại C,D. Tính chu vi tam giác MCD theo R. d, Tính số đo góc COD.
Giúp mình giải với ạ, mình cảm ơn nhiều.
cho nửa đường tròn (O), đường kính AB. kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. lấy điểm C bất kì trên nửa đường tròn đó. tiếp tuyến của nửa đường tròn tại C cắt Ax, By lần lượt ở M và N.
a) tính MÔN
b) chứng minh bốn điểm: O, A, M, C cuàng thược một đường tròn
c) gọi E là giao điểm của OM và AC, F là giao điểm của ON và BC
chứng minh: OE.OM= OF.ON
cho nửa đường tròn tâm O đường kính AB. kẻ các tiếp tuyến ax, by cùng phía với đường tròn. điểm C thuộc đường tròn (O). tiếp tuyến tại c cắt ax, by tại m và n. ac giao om tại h, bc giao on tại k. an cắt hk tại i. chứng minh rằng ci vuông góc với ab
Cho nửa (O;R) đường kính AB . Kẻ tiếp tuyến Ax với nửa đường tròn đó ( tia Ax thuộc nửa mặt phẳng bờ chứa nửa (O) ). Từ điểm M bất kỳ trên tia Ax kẻ tiếp tuyến thứ 2 MC với nửa đường tròn ( C là tiếp điểm ). AC cắt OM tại E, MB cắt nửa (O) tại D ( D khác B )
a. Chứng minh tứ giác ACOM nội tiếp một đường tròn
b. Chứng minh AC2=4.OE.ME
c. Chứng minh góc ADE bằng góc ACO