Cho nửa đường tròn (O;R), đường kính AB. M là điểm nằm trên nửa đường tròn, tiếp tuyến tại M cắt các tiếp tuyến tại A và B ở C và D
a) Chứng minh CD= AC+DB và tam giác COD vuông
b) Chứng minh AC.BD=R2
c) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn (O) đường kính AB. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. Điểm M nằm trên (O) sao cho tiếp tuyến tại M cắt Ax, By tại D và C. Chứng minh:
a, AD + BC = CD
b, C O D ^ = 90 0
c, AC.BD = O A 2
d, AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn tâm O bán kính R, đường kính ab chứa nửa đường tròn, kẻ hai tiếp tuyến Ax và By với đường tròn. M là một điểm bất kỳ trên nửa đường tròn. Tiếp tuyến tại M cắt Ax, By lần lượt tại C và D.
a) CMR: CD = AC + BD và góc COD vuông
b) CMR: \(AC.BD=R^2\)
c) OC cắt AM tại E; OD cắt BM tại F, chứng minh EF = R
Cho nửa đường tròn (O) đường kính AB=2R. Lấy điểm M thuộc nửa đường tròn (O). Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B của nửa đường tròn (O) lần lượt tại C và D.
a) Cm góc COD = 90 độ
b) Cm : CD = AC + BD
c) Cm AC.BD =\(R^2\)
Cho nửa đường tròn (O;R) có đường kính AB. Tiếp tuyến tại điểm M trên nửa đường tròn lần lượt cắt 2 tiếp tuyến tại A và B ở C và D.
1. C/m: AC+DB=CD
2. C/m: Tam giác COD vuông và AC.BD=\(R^2\)
3. OC cắt AM tại E và OD cắt BM tại F. C/m:
a) Tứ giác OEMD là hình chữ nhật
b) OE.OC=OF.OD=\(R^2\)
c) EF\(\perp\)BD
d) C/m: AB là tiếp tuyến của đường tròn đường kính CD
e) AD cắt BC tại N. C/m: MN//AC
Cho nửa đường tròn (O;R), đường kính AB. Kẻ các tiếp tuyến Ax và By với nửa đường tròn. Tiếp tuyến tại một điểm M trên nửa đường tròn cắt Ax tại C và By tại D. Chứng minh
a) CD = CA + DB và góc COD = \(90^0\)
b) AB là tiếp tuyến của đường tròn đường kính CD
c) Dọi N là giao điểm của AD và BC. Chứng minh MN vuông góc với AB
Cho nửa đường tròn (O;R) có AB là đường kính. Vẽ các tiếp tuyến Ax, By của nửa đường tròn (O;R). Trên nửa đường tròn lấy điểm M sao cho MA < MB. Tiếp tuyến tại M của nửa đường tròn (O;R) cắt Ax tại C, cắt By tại D.
a/ Chứng minh CD = AC + BD
b/ Chứng minh góc COD= 90o và AC.BD=R2
c/ Đường thẳng BM cắt Ax tại N. Đường thẳng AM cắt ON tại E và cắt OC tại H. Đường thẳng NH cắt AB tại F. Gọi K là giao điểm của OC và EF. Chứng minh NA2=MN.NB và KE = KF
Cho nửa đường tròn tâm O đường kính AB và M là điểm nằm trên (O). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của (O) lần lượt ở C và D. Đường thẳng AM cắt OC tại E, đường thẳng BM cắt OD tại F
a, Chứng minh: C O D ^ = 90 0
b, Tứ giác MEOF là hình gì?
c, Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn tâm O bán kính R, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng
phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ ba với
đường tròn, tiếp tuyến này cắt Ax và By lần lượt tại C và D.
a) Chứng minh: OC AM và AM // OD;
b) Chứng minh: AC.BD = R2
c) Chứng minh: AB là tiếp tuyến đường tròn đường kính CD;
d) Gọi K là giao điểm của AD và BC. Chứng minh MK AB;
e) Tìm vị trí điểm M sao cho diện tích tứ giác ACDB nhỏ nhất.