CMR :
a) 1 số chính phương ko thể viết đc dưới dạng 4n+2 hoặc 4n+3
b) 1 số chính phương ko thể viết đc dưới dạng 3n+2 với n nguyên
c) tính : an =1+2+3+...+n
d) cm : an +an+1 là số chính phương
1.Tìm n∈N sao cho n+2 và n+7 đều là số chính phương
2.Tìm n∈N sao cho 4n+5 và 9n+16 đều là số chính phương
1.Tìm n∈N sao cho n+2 và n+7 đều là số chính phương
2.Tìm n∈N sao cho 4n+5 và 9n+16 đều là số chính phương
Cho : Sn =\(\frac{5}{1.2.3}+\frac{8}{2.3.4}+...+\frac{3n+2}{n.\left(n+1\right).\left(n+2\right)}\)
CMR : S2008 <2
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
Tính tổng :
a) 1.2 + 2.3 + 3.4 + ... + n.(n+1)
b) 1.2.3 + 2.3.4 + 3.4.5 + ... + n(n+1)(n+2)
Với n là số tự nhiên khác 0
Cho n là một số nguyên dương thỏa mãn n+1 và 2n+1 đồng thời là 2 số chính phương(số chính phương là bình phương của 1 số nguyên ) CMR: n chia hết 24
cho S=1.2.3+2.3.4+3.4.5+....+ 9.10.11 chứng minh 4S + 1 luôn là số chính phương
E=1.2.3+2.3.4+...+n(n+1)(n+2)