Ta có:
n = 1 + 3 + 32 + 33 + ... + 399
=> 3n = 3 ( 1 + 3 + 32 + 33 + ... + 399 )
3n = 3 + 32 + 33 + 34 + ... + 3100
3n - n = 2n = 3100 - 1
=> 2n + 1 = 3100
n = 1 + 3 + 32 + 33 + ... + 399
3n = 3 + 32 + 33 + 34 + ... + 3100
3n - n = (3 + 32 + 33 + 34 + ... + 3100) - (1 + 3 + 32 + 33 + ... + 399)
2n = 3100 - 1
2n + 1 = 3100
Ủng hộ mk nha ^_-
\(n=1+3+3^2+3^3+...+3^{99}\)
\(=>3n=3+3^2+3^3+3^4+....+3^{100}\)
\(=>3n-n=\left(3+3^2+3^3+3^4+...+3^{100}\right)-\left(1+3+3^2+3^3+....+3^{99}\right)\)
\(=>2n=3^{100}-1=>2n+1=3^{100}-1+1=3^{100}\)
n=1+3+32+33+...+399
3n=3+32+33+34+....+3100
2n=3n-n=3100-1(sau khi đã khử những số đối nhau nha,bước này chị làm tắt)
2n+1=3100-1+1
=3100
Vậy 2n+1=3100
Chúc em học tốt^^
3n = 3 . ( 1 + 3 + 32 + 33 + ..... + 398 + 399 )
3n = 3 + 32 + 33 + 34 + ...... + 399 + 3100
3n + 1 = 1 + 3 + 32 + 33 + 34 + ...... + 399 + 3100
=> 3n + 1 = n + 3100
=> 3n - n + 1 = 3100
=> 2n + 1 = 3100
Ta có: \(N=1+3+3^2+...+3^{99}\)
\(\Rightarrow3N=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3N-N=\left(3+3^2+...+3^{100}\right)-\left(1+3+3^2+....+3^{99}\right)\)
\(\Rightarrow2N=3^{100}-1\)
\(\Rightarrow2^n+1=3^{100}\)
N = 1 + 3 + 32 + 33 + ... + 399
=>3N = 3.(1+3+32+33+...+399)
=>3N = 3 + 32 + 33 + 34 + ... + 3100
=>3N - N = (3 + 32 + 33 + 34 + ... + 3100) - (1 + 3 + 32 + 33 + ... + 399)
=>2N = 3100 - 1
=>2n + 1 = 3100
Ta có:n = 1 + 3 + 32 + 33 + ... + 399
=> 3n = 3 + 32 + 33 + ... + 3100
=> 3n - n = 3100 - 1
=> 2n = 3100 - 1
\(=>2n+1=3^{100}\)