Cho một khối chóp có thể tích bằng V. Khi giảm chiều cao của hình chóp xuống 2 lần và tăng diện tích đáy lên 4 lần thì thể tích khối chóp lúc đó bằng
A. 2 V 3
B. 2V
C. V 2
D. 3V
Cho một khối chóp có thể tích bằng V. Khi giảm chiều cao của hình chóp xuống 2 lần và tăng diện tích đáy lên 4 lần thì thể tích khối chóp lúc đó bằng
A. 2 V 3
B. 2V
C. 3V
D. V 2
Cho khối chóp tứ giác đều S . A B C D có thể tích là V. Nếu tăng độ dài cạnh đáy lên ba lần và giảm độ dài đường cao xuống hai lần thì ta được khối chóp mới có thể tích là
A. 9 2 V
B. 9 V
C. 3 V
D. 3 2 V
Cho khối chóp tứ giác đều S.ABCD có thể tích là V. Nếu tăng độ dài cạnh đáy lên ba lần và giảm độ dài đường cao xuống hai lần thì ta được khối chóp mới có thể tích là:
A. 9 2 V
B. 9V
C. 3V
D. 3 2 V
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Cho môt khối chóp có thể tích bằng V. Khi giảm diện tích đa giác đáy xuống 1 3 lần thì thể tích khối chóp lúc đó bằng
A . V 3
B . V 6
C . V 27
D . V 9
Cho khối tứ diện ABCD có thể tích bằng V, thể tích của khối đa diện có đỉnh là trung điểm các cạnh của tứ diện ABCD bằng V' Tính tỉ số V ' V .
A. V ' V = 1 2
B. V ' V = 1 8
C. V ' V = 1 4
D. V ' V = 3 4
Cho hình lăng trụ tam giác ABC.A’B’C’ có thể tích là V và độ dài cạnh bên là AA’=6 đơn vị. Cho điểm A1 thuộc cạnh AA’ sao cho AA1=2. Các điểm B1, C1 lần lượt thuộc cạnh BB’, CC’ sao cho BB1=x, CC1=y. Biết rằng thể tích khối đa diện ABC. A1B1C1 bằng 1/2V. Giá trị của x+y bằng
A. 10
B. 4
C. 16
D. 7