BĐT Cosi cho 2 số a,b >0:
a + b >= 2căn(ab)
di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a + b - 2√(ab) ≥ 0
<=> a + b ≥ 2√(ab)
dau "=" xay ra khi √a - √b = 0 <=> a = b
(a+b)/2 >=Cab(C là căn)
a+b>=2*Cab
(a+b)^2>=4*ab
a^2+2ab+b^2-4ab>=0
a^2-2ab+b^2>=0
(a-b)^2>=0(luôn đúng)
vây ta được điều cm
Đây chính là bất đẳng thức côsi 2 số mà bạn
(a+b)/2 >=Cab(C là căn)
a+b>=2*Cab
(a+b)^2>=4*ab
a^2+2ab+b^2-4ab>=0
a^2-2ab+b^2>=0
(a-b)^2>=0(luôn đúng)
vây ta được điều cm
Đây chính là bất đẳng thức côsi 2 số mà bạn
Bài làm:
*CM bất đẳng thức Cauchy
Ta có: \(\left(x-y\right)^2\ge0\)(luôn đúng với mọi x,y)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2+4xy\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\frac{\left(x+y\right)^2}{4}\ge xy\)
\(\Leftrightarrow\sqrt{\frac{\left(x+y\right)^2}{4}}\ge\sqrt{xy}\)
\(\Leftrightarrow\frac{x+y}{2}\ge\sqrt{xy}\)
Mình chứng minh theo cách đặt biến x,y nhé!
*Chứng minh không có giá trị nào của x,y,z thỏa mãn đẳng thức: (Đề bạn chép nhầm biến x thành a nhé)
Ta có:
\(x^2+4y^2+z^2-2x+8y-6z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4=0\)\(\left(1\right)\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-3\right)^2\ge0\end{cases}}\)với mọi x,y,z
\(\Rightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\)với mọi x,y,z
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\ge4>0\)với mọi x,y,z \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\)\(\Rightarrow\)Mâu thuẫn\(\Rightarrow\)Không tồn tại bất kỳ giá trị nào của x,y,z thỏa mãn đẳng thức trên
=> điều phải chứng minh
Học tốt!!!!