Cho mặt phẳng (P) đi qua các điểm A(-2;0;0), B(0;3;0), C(0;0;-3). Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau?
A. x+y+z+1=0
B. x-2y-z-3=0
C. 2x+2y-z-3=0
D. 3x-2y+2z+6=0
Trong không gian Oxyz, cho ba điểm A(1;0;0), B(0;3;0), C(0;0;-2). Phương trình của mặt phẳng (P) đi qua điểm D(1;1;1) và song song với mặt phẳng (ABC) là
Trong không gian Oxyz, cho 2 điểm A(0;3;0), B(0;0;-4) và (P): x+2z=0. Gọi C thuộc trục Ox sao cho mặt phẳng (ABC) vuông góc với mặt phẳng (P). Tọa độ tâm mặt cầu ngoại tiếp tứ diện OABC là
A. ( 1 ; 3 2 ; - 2 )
B. ( - 1 ; - 3 2 ; 2 )
C. ( 1 2 ; 3 2 ; - 1 )
D. ( 1 ; 0 ; - 2 )
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng đi qua các điểm A(2;0;0), B(0;3;0), C0;0;4) có phương trình là:
A. 6x + 4y + 3z + 12 = 0
B. 6x + 4y + 3z = 0
C. 6x + 4y + 3z - 12 = 0
D. 6x + 4y + 3z - 24 = 0
Trong không gian với hệ tọa độ Oxy, cho mặt phẳng (P): 2y-z+3=0 và điểm A (2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:
A. 8.
B. 16
C. 8/3
D. 16/3
Trong hệ tọa độ Oxyz cho A (3;3;0), B (3;0;3), C (0;3;3). Mặt phẳng (P) đi qua O, vuông góc với mặt phẳng (ABC) sao cho mặt phẳng (P) cắt các cạnh AB, AC tại các điểm M, N thỏa mãn thể tích tứ diện OAMN nhỏ nhất. Mặt phẳng (P) có phương trình:
A. x+y-2z=0.
B. x+y+2z=0.
C. x-z=0.
D. y-z=0
Trong không gian với hệ tọa độ Oxyz , cho ba điểm A(2;0;0), B(0;3;0), C(0;0;4) , mặt phẳng (ABC) có phương trình:
A. x 2 + y 3 + z 4 + 1 = 0
B. x 2 - y 3 + z 4 = 0
C. x 2 + y 3 - z 4 = 0
D. x 2 + y 3 + z 4 = 1
Cho mặt phẳng (P): x-y-2z-1=0 và hai điểm A(2;0;0), B(3;-1;2). Viết phương trình mặt cầu (S) có tâm I thuộc mặt phẳng (P) và đi qua các điểm A,B và gốc tọa độ O.
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(-2;0;0), B(0;3;0) và C(0;0;2). Phương trình nào dưới đây là phương trình của mặt phẳng (ABC)?