Mặt cầu tâm I bán kính R=11cm cắt mặt phẳng (P) theo giao tuyến là một đường tròn đi qua ba điểm A, B, C. BiếtAB=8cm, AC=6cm, BC=10cm. Tính khoảng cách d từ I đến mặt phẳng (P).
A. d = 21 c m
B. d = 146 c m
C. d = 4 6 c m
D. d = 4 c m
Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S)(D không thuộc đường tròn (C) và tam giác ABC đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 10 3 c m 3
B. 15 3 c m 3
C. 32 3 c m 3
D. 40 3 c m 3
Cho mặt cầu S có bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu S theo giao tuyến là đường tròn C có chu vi bằng 8 π . Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn C , điểm D thuộc S (D không thuộc đường tròn C ) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho mặt cầu (S) có tâm I và bán kính R = 5. Đường thẳng D cắt mặt cầu tại hai điểm A, B thỏa mãn AB = 4. Tính khoảng cách d từ tâm I đến đường thẳng D
A. d = 21
B. d = 1
C. d = 3
D. d = 17
Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π cm . Bốn điểm A, B, C, D thay đổi sao A, B, C cho thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho mặt cầu (S) bán kính R = 5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3 .
B. 60 3 c m 3 .
C. 20 3 c m 3 .
D. 96 3 c m 3 .
Cho mặt cầu (S) có bán kính R = 5 (cm). Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Thể tích lớn nhất của khối tự diện ABCD bằng bao nhiêu?
A. 32 3 c m 2
B. 60 3 c m 2
C. 20 3 c m 2
D. 96 3 c m 2
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S tâm I 1 ; - 2 ; 1 ; bán kính R = 4 và đường thẳng d : x 2 = y - 1 - 2 = z + 1 - 1 . Mặt phẳng chứa d và cắt mặt cầu theo một đường tròn có diện tích nhỏ nhất. Hỏi trong các điểm sau điểm nào có khoảng cách đến mặt phẳng P lớn nhất.
A. O(0;0;0)
B. A 1 ; 3 5 ; - 1 4
C. (-1;-2;-3)
D. C(2;1;0)
Trong không gian hệ tọa độ Oxyz cho 2 đường thẳng ∆ 1 : x = t 1 y - t 1 t 1 ∈ ℝ z = 0 và ∆ 2 : x = 5 - 2 t 2 y = - 2 t 2 ∈ ℝ z = t 2 . Lập phương trình mặt cầu biết tâm I mặt cầu thuộc ∆ 1 , khoảng cách từ I đến ∆ 2 bằng 3 đồng thời mặt phẳng (α):2x+2y-7z=0 cắt mặt cầu theo giao tuyến là một đường tròn có bán kính r = 5 .
A. x + 2 2 + y 2 + z - 1 2 = 25 , x - 5 3 2 + y - 5 3 2 + z 2 = 25
B. x - 1 2 + y 2 + z - 2 2 = 25 , x - 5 3 2 + y + 5 3 2 + z 2 = 25
C. x + 1 2 + y 2 + z + 2 2 = 25 , x 2 + y + 5 3 2 + z - 5 3 2 = 25
D. x 2 + y 2 + z 2 = 25 , x + 5 3 2 + y - 5 3 2 + z 2 = 25