Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Trong không gian Oxyz cho điểm M (2;1;1), mặt phẳng α : x + y + z - 4 = 0 và mặt cầu ( s ) : ( x - 3 ) 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 . Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
A. (4; -3; 3)
B. (4; -3; -3)
C. (4; 3; 3)
D. (-4; -3; -3)
Viết phương trình mặt phẳng tiếp xúc với mặt cầu ( S ) : ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 9 tại điểm M(6; -2; 3).
A. 4x-y-26=0
B. 4x+y-26=0
C. 4x+y+26=0
D. 4x-y+26=0
Cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 và mặt phẳng ( α ): 2x+y-2z+m=0. Các giá trị của m để ( α ) và (S) không có điểm chung là:
A. m ≤ - 9 hoặc m ≥ 21
B. m < - 9 hoặc m > 21
C. - 9 ≤ m ≤ 21
D. - 9 < m < 21
Cho mặt cầu (S) có phương trình x 2 + y 2 + z 2 - 2 x - 2 y + 4 z + 2 = 0 và mặt phẳng P : 2 x - 3 y + z - m = 0 . Mặt cầu (S) và mặt phẳng (P) có giao nhau khi:
A. m < - 3 - 2 14 h o ặ c m > - 3 + 2 14
B. - 3 - 2 14 ≤ m ≤ - 3 + 2 14
C. - 2 - 3 14 ≤ m ≤ - 2 + 3 14
D. - 2 - 3 14 < m < - 2 + 3 14
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y + 1 ) 2 ( z + 1 ) 2 = 9 và điểm A(2;3;-1). Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với (S), M luôn thuộc mặt phẳng có phương trình:
A. 6x+8y+11=0
B. 3x+4y+2=0
C. 3x+4y-2=0
D. 6x+8y-11=0
Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): 2x+2y-z+16=0 và mặt cầu (s): (x-2)2 + (y+1)2 + (z-3)2=9. Điểm M di động trên trên (S) và điểm N di động trên (P) sao cho độ dài đoạn thẳng MN ngắn nhất. Tọa độ điểm M là
A. M(0;1;-1)
B. M(0;-3;4)
C. M(2;0;1)
D. M(-2;2;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y+z+m= 0 (m là tham số) và mặt cầu (S): ( x - 2 ) 2 + ( y + 1 ) 2 + z 2 = 16 . Tìm các giá trị của m để (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất.
A. - 1 - 4 3 ≤ m ≤ - 1 + 4 3 .
B. m ≠ 0 .
C. m =1.
D. m = -1
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 4 ) 2 = 10 và mặt phẳng ( P ) : - 2 x + y + 5 z + 9 = 0 . Gọi (Q) là tiếp diện của (S) tại M(5;0;4). Tính góc giữa (P),(Q)
A. 60 °
B. 120 °
C. 30 °
D. 45 °
Tìm m ≥ 0 để mặt phẳng (P): 2x+y-2z+m=0 tiếp xúc với mặt cầu ( S ) : ( x - 2 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 1
A. m=10
B. m=5
C. m=0
D. m=-1