Cho hình trụ có bán kính r, trục OO' = 2r và mặt cầu đường kính OO'.
Hãy so sánh diện tích mặt cầu và diện tích xung quanh của hình trụ.
Cho hình cầu (S) tâm I, bán kính R không đổi. Một hình trụ có chiều cao h và bán kính r thay đổi nội tiếp hình cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
Cho hình trụ có hai đáy là hình tròn (O) và (O’), chiều cao R 3 bán kính R và hình nón có đỉnh là O’, đáy là hình tròn (O,R). Tính tỉ số giữa diện tích xung quanh của hình trụ và diện tích xung quanh của hình nón.
A. 2
B. 3
C. 2
D. 3
Một hình trụ có hai đường tròn đáy nằm trên một mặt cầu bán kính R và có đường cao bằng bán kính mặt cầu. Diện tích toàn phần hình trụ đó bằng:
Cho hình trụ có bán kính đáy là R=a, mặt phẳng qua trục cắt hình trụ theo một thiết diện có diện tích bằng 8 a 2 . Diện tích xung quanh của hình trụ và thể tích khối trụ là:
Cho hình nón (N) có bán kính đáy r=20(cm), chiều cao h=60(cm) và một hình trụ (T) nội tiếp hình nón (N) (hình trụ (T) có một đáy thuộc đáy hình nón và một đáy nằm trên mặt xung quanh của hình nón). Tính thể tích V của hình trụ (T) có diện tích xung quanh lớn nhất?
Một hình trụ có bán kính đáy bằng r và khoảng cách giữa hai đáy bằng r 3 Một hình nón có đỉnh là tâm mặt đáy này và đáy trùng với mặt đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.
A. 3
B. 1 3
C. 1 3
D. 3
Một khối trụ có trục là một đường kính của mặt cầu (S) bán kính R, các đường tròn đáy đều thuộc mặt cầu, biết hình trụ đó có bán kính đường tròn đáy và đường sinh bằng nhau. Tính tỉ số thể tích V 1 của hình trụ đó với V 2 là thể tích mặt cầu.
Hình trụ tròn xoay có bán kính đáy bằng r, có chiều cao bằng 2r và có trục là OO’. Thiết diện nói trên cắt mặt cầu đường kính OO’ theo thiết diện là một đường tròn. Tính bán kính của đường tròn đó.