Đáp án B
Sử dụng máy tính nhập log 12 3 gán cho biến A, log 24 18 gán cho biến B
Nhập kết quả các đáp án trừ đi B
Kết quả nào = 0 là đáp án đúng
Đáp án B
Sử dụng máy tính nhập log 12 3 gán cho biến A, log 24 18 gán cho biến B
Nhập kết quả các đáp án trừ đi B
Kết quả nào = 0 là đáp án đúng
Cho log 2 = a , log 3 = b . Biểu diễn log 625 270 theo a và b là:
A. 1 4 3 b + 1 1 - a
B. a + 2 b 2 3 a 1 - b
C. a + b 2 4 a 1 - b
D. a + b 2 2 a 1 - b
Biết M'(a;b) là ảnh của điểm M(1;-2)qua phép tịnh tiến theo vectơ v = 2 ; − 3 . Khi đó tính giá trị của biểu thức T = a + b
A. T = 2
B. T = -2
C. T = -1
D. T = 1
Giả sử a,b là các số thực sao cho x 3 + y 3 = a 10 3 x + b 10 2 x đúng với mọi các số thực dương x, y, z thỏa mãn log ( x + y ) = z và log ( x 2 + y 2 ) = z + 1 . Giá trị của a+b bằng
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Cho a,b,c là các số thực dương thỏa mãn a log 5 2 = 4 , b log 4 6 = 1 , log , c log 7 3 = 49 Tính giá trị của biểu thức T = a log 2 2 5 + b log 4 2 6 + 3 c log 7 2 3
A. T=126
B. T = 5 + 2 3
C. T=88
D. T = 3 - 2 3
Trong không gian với hệ tọa độ Oxyz, cho điểm M(a;b;c), (a > 0) thuộc đường thẳng d : x − 3 = y + 2 − 1 = z − 1 2 . Hình chiếu song song của điểm M trên mặt phẳng P : x + 5 y − 2 = 0 theo phương của đường thẳng Δ: x = 3 − t y = 1 + 2 t z = − 3 t là điểm M’ sao cho MM ' = 14 . Tính giá trị của biểu thức T = a + b + c là:
A. 0
B. 1
C. 2
D. 3
Trong không gian Oxyz cho ba điểm A(1;2;3), B(-1;0;-3), C(2;-3;-1). Điểm M(a;b;c) thuộc đường thẳng ∆ : x - 1 2 = y + 1 3 = z - 1 - 1 sao cho biểu thức P = M A ⇀ - 7 M B ⇀ + 5 M C ⇀ đạt giá trị lớn nhất. Tính a + b + c =?
A. 31 4
B. 11 3
C. 12 5
D. 55 7
Trong không gian với hệ trục tọa độ Oxyz, cho A ( 3 ; − 1 ; − 3 ) , B ( − 3 ; 0 ; − 1 ) , C ( − 1 ; − 3 ; 1 ) và mặt phẳng ( P ) : 2 x + 4 y + 3 z − 19 = 0 . Tọa độ M ( a , b , c ) thuộc (P) sao cho M A → + 2 M B → + 5 M C → đạt giá trị nhỏ nhất. Khi đó a + b + c bằng:
A. 4
B. 5
C. 6
D. 7
Cho hàm số y = m x + 1 2 x − 1 (m là tham số, m ≠ 2 ). Gọi a, b lần lượt giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên 1 ; 3 . Khi đó có bao nhiêu giá trị của m để a . b = 1 5 .
A. 0
B. 2
C. 1
D. 3
cho \(log_2^3=a;log_2^5=b\) tính \(log^{600}_2\)
Cho số thực a thỏa mãn l i m x → + ∞ a 2 x 2 + 3 + 2017 2 x + 2018 = 1 2 . Khi đó giá trị của a là:
A. a = 2 2
B. a = - 2 2
C. a = 1 2
D. a = - 1 2