Cho \(0\le a\le b\le c\le1\Leftrightarrow\left(\frac{a}{bc+1}\right)+\left(\frac{b}{ac+1}\right)+\left(\frac{c}{ab+1}\right)\le2\)
Các bạn chứng minh rõ ràng hộ mình với.
:)
tim x
a, \(\left(x+1\right)\left(2-x\right)\left(3+x^2\right)\ge0\)
b, \(\left(2x+1\right)\left(x+3\right)\left(x-5\right)>0\)
c,\(\frac{\left(3x-6\right)\left(x-4\right)}{x+3}< 0\)
CMR
\(\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
Chứng minh rằng với a,b,c > 0 thì \(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Help me!
Cho 3 số a,b,c đôi một phân biệt. CMR:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\\ \)
Cho ba số a; b; c đôi một phân biệt. Chứng Minh Rằng:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)
Cho các số \(a,b,c\ne0\) thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}+\frac{ac}{a+c}\).
Tính \(\left(1+\frac{a}{2b}\right)\left(1+\frac{b}{3c}\right)\left(1+\frac{c}{4a}\right)\)
a.. \(\frac{7-8x}{6}=\frac{-4+2x}{5}\)
\(b.\frac{1-3:x}{8}=\frac{8}{1-3:x}\)
c. \(\left(x+1\right).\left(x-2\right)\ge0\)
h. \(\left(x+1\right).\left(x-3\right)\le0\)
AI làm nhanh mih tích mih tích cho nha đang rất rất cần
cho a,b,c thỏa mãn : \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}=2013\)
tính M = \(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)