Cho hình lăng trụ tam giác ABC.A'B'C'có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60 ο và hình chiếu vuông góc của đỉnh A lên mặt phẳng (A'B'C') trùng với trung điểm của cạnh B'C'.
a) Tính khoảng cách giữa hai mặt phẳng đáy của lăng trụ.
b) Chứng minh rằng mặt bên BCC'B' là một hình vuông.
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác ABC đều cạnh a . Gọi I là trung điểm AB , hình chiếu của điểm A' lên (ABC ) là trung điểm H của đoạn CI , góc giữa đường thẳng AA' và mặt phẳng (ABC ) bằng 45 độ. Tính khoảng cách giữa hai đường thẳng chéo nhau A A' và CI
Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a.Hình chiếu của đỉnh A’ xuống mặt phẳng (ABC) trùng với trung điểm của cạnh BC.Biết góc giữa cạnh bên và mặt đáy bằng 60 độ.Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’).
Cho hình lăng trụ ABC.A'B'C' có mặt đáy ABC là tam giác đều, độ dài cạnh AB = 2a. Hình chiếu vuông góc của A' lên (ABC) trùng với trung điểm H của cạnh AB. Biết góc giữa cạnh bên và mặt đáy bằng 60 0 , tính theo a khoảng cách h từ điểm B đến mặt phẳng (ACC'A')
A . h = 39 a 13
B . h = 2 15 a 5
C . h = 2 21 a 7
D . h = 15 a 5
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a; tam giác A’BC đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABC) M là trung điểm của cạnh CC’. Tính cosin góc α là góc giữa hai đường thẳng AA’ và BM
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 60⁰. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Khoảng cách từ điểm A đến mặt phẳng (SMN) bằng
A. a 3
B. 7 a 3
C. 3 a 7
D. a 7
Cho hình lăng trụ ABC.A’B’C’ đáy là tam giác đều tâm O, C’O vuông góc với (ABC). Khoảng cách từ O tới đường thẳng CC’ bằng a. Góc tạo bởi mặt phẳng (AA’C’C) và mp(BB’C’C) bằng 120 o . Gọi góc giữa cạnh bên và đáy của lẳng trụ là φ thì.
A. tan φ = 2 4
B. cos φ = 3 4
C. si n φ = 1 3
D. c o t φ = 2 2
Cho lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu của A' lên (ABC) là trọng tâm của ΔABC. AA' = \(\dfrac{a\sqrt{6}}{3}\). Gọi P,Q,N lần lượt là trung điểm của AB,CC' và A'G. Tính khoảng cách từ N đến (PQC)
Cho hình chóp đều SABCD có cạnh đáy bằng a căn 2 cạnh bên bằng 2a. Gọi O là tâm của đáy , gọi lần lượt I,J là trung điểm của BC,AD. a)Chứng minh : mp (SBC) vuông mp(SIJ)
b) Tính góc giữa đường thẳng SC và mặt phẳng (ABCD)
c) Tính khoảng cách giữa 2 đường thẳng AD và SB