Chọn A.
+) Ta có:
Ta có:
+) Gọi P là trung điểm của B’C’, suy ra:
(MNP)//(ABC')
Chọn A.
+) Ta có:
Ta có:
+) Gọi P là trung điểm của B’C’, suy ra:
(MNP)//(ABC')
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, A B C ⏜ = 30 0 . Gọi M là trung điểm của AB, tam giác MA'C đều cạnh 2a 3 và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối lăng trụ là ABC.A'B'C'
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân với AB=AC=a và cạnh BAC=120 ° , cạnh bên BB'=a, gọi I là trung điểm của CC'. Côsin góc tạo bởi mặt phẳng (ABC) và (AB'I) bằng.
A. 20 10
B. 30
C. 30 10
D. 30 5
Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại A, AC=a, A C B ⏜ = 60 0 . Đường thẳng BC’ tạo với mặt phẳng (AA’C’C) góc 30 0 . Tính thể tích khối lăng trụ đã cho.
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B; AB = a, BC = a 2 ; mặt phẳng (A'BC) hợp với mặt đáy (ABC) góc 30°. Thể tích của khối lăng trụ là:
A. a 3 6
B. a 3 6 12
C. a 3 6 3
D. a 3 6 6
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng a√3/4. Tính thể tích V của khối lăng trụ ABC.A'B'C'
A. V = a 3 3 6
B. V = a 3 3 3
C. V = a 3 3 24
D. V = a 3 3 12
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, AB = 2a, AA'=a , góc giữa BC' và (ABB'A') bằng 60 o . Gọi N là trung điểm AA' và M là trung điểm BB'. Tính khoảng cách từ điểm M đến mặt phẳng (BC'N).
A. 2 a 74 37
B. a 74 37
C. 2 a 37 37
D. a 37 37
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC vuông cân tại A, cạnh BC = a√6. Góc giữa mặt phẳng (AB'C) và mặt phẳng (BCC'B') bằng 600. Tính thể tích V của khối lăng trụ ABC.A'B'C'?
A . V = 2 a 3 3 3
B . V = a 3 3 2
C . V = 3 a 3 3 4
D . V = 3 a 3 3 2
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A với AB = a, AC = a 3 . Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC và góc giữa AA’ tạo với mặt phẳng (ABC) bằng 60 ∘ . Gọi V là thể tích khối lăng trụ ABC.A'B'C'. Tính V 3 + V a 3 - 1 .
A. 1.
B. a.
C. a 2 .
D. a 3 .
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, A C = a , A C B ^ = 60 0 . Đường thẳng BC’ tạo với mặt phẳng (ACC’A’) một góc 30 0 . Tính thể tích V của khối lăng trụ ABC.A'B'C'