Chọn A
Gọi H, K lần lượt là là trung điểm cạnh A'B' và AB. Từ giả thiết ta có
Mặt khác: HC', HB' và HK đôi một vuông góc nhau.
Tọa độ hóa
Xét mặt phẳng (BC'N) có
Phương trình (BC'N) là:
Khoảng cách từ M đến (BC'N) là:
Chọn A
Gọi H, K lần lượt là là trung điểm cạnh A'B' và AB. Từ giả thiết ta có
Mặt khác: HC', HB' và HK đôi một vuông góc nhau.
Tọa độ hóa
Xét mặt phẳng (BC'N) có
Phương trình (BC'N) là:
Khoảng cách từ M đến (BC'N) là:
Cho lăng trụ đứng ABC.A'B'C' có tam giác ABC vuông cân tại A, AB = AC = 2a, AA' = 3a. Gọi M là trung điểm AC, N là trung điểm BC. Khoảng cách từ điểm C đến mặt phẳng (A'MN)
A. 2 a 10
B. 3 a 10
C. 6 a 10
D. a 10
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB=a, AA'= 2a. Gọi M là trung điểm của đoạn thẳng A'C', I là giao điểm của AM và AC'. Tính khoảng cách từ điểm A đến mặt phẳng (IBC).
A . 2 5 a 5
B . 5 a 5
C . 2 3 a 5
D . 3 a 5
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB=AA'=a (tham khảo hình vẽ bên). Tính tang của góc giữa đường thẳng BC' và mặt phẳng (ABB'A').
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC=2a. Hình chiếu vuông góc của A' trên mặt phẳng (ABC) là trung điểm H của cạnh AB và AA' = a 2 . Tính thể tích khối lăng trụ ABC.A'B'C' theo a.
A. V = a 3 6 6
B. V = a 3 3
C. V = a 3 6 2
D. V = a 3 2
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) là trung điểm O của cạnh AB. Số đo của góc giữa đường thẳng AA' và mặt phẳng ( A ' B ' C ' ) bằng 60 0 . Gọi I là trung điểm của cạnh B’C’. Khoảng cách giữa hai đường thẳng CI và AB’ bằng
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác vuông cân đỉnh A , AB = 2a, AA' = 2a, hình chiếu vuông góc của A' lên mặt phẳng (ABC) là trung điểm H của cạnh BC . Thể tích của khối lăng trụ ABC.A'B'C' bằng
A. 4 a 3 2
B. 2 a 3 2
C. a 3 14 4
D. 2 a 3 2 3
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông BA=BC=a, cạnh bên AA'=a 2 , M là trung điểm của BC. Khoảng cách giữa AM và B' C là:
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, BAC = 30 ° , AB = a 3 , AA' = a. Gọi M là trung điểm của BB'. Tính theo a thể tích V của khối tứ diện MACC'.
A. V = a 3 3 12
B. V = a 3 3 4
C. V = a 3 3 3
D. V = a 3 3 18
Cho lăng trụ A B C . A ' B ' C ' có đáy ABC là tam giác đều cạnh 2a, hình chiếu vuông góc của A lên mặt phẳng ( A ' B ' C ' ) là trung điểm H của A’B’. Gọi M, N lần lượt là trung điểm của A A ' , B ' C ' . Biết rằng AH = 2a và α là số đo của góc giữa đường thẳng MN và mặt phẳng ( A C ' H ) . Khi đó cos α bằng