Cho khối nòn đỉnh O, trục OI. Mặt phẳng trung trực của OI chia khối chóp thành hai phần. Tỉ số thể tích của hai phần là:




Cho khối nón đỉnh S, trục SI (I là tâm của đáy). Mặt phẳng trung trực của SI chứa khối chóp thành hai phần. Gọi V 1 là thể tích cảu phần chứa S và V 2 là thể tích của phần còn lại. Tính V 1 V 2 ?




Cho hình chóp tứ diện đều S.ABCD có canh đáy a, cạnh bên hợp với đáy một góc 60 o . Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành 2 phần. Tính tỉ số thể tích của hai phần đó.
A. 7 5
B. 7 3
C. 1 7
D. 1 5
Cho khối hộp ABCD.A'B'C'D' Gọi M là trung điểm của cạnh AB. Mặt phẳng (MB'D') chia khối hộp thành hai phần. Tính tỉ số thể tích hai phần đó.
A. 5 12
B. 7 17
C. 7 24
D. 5 17
Cho lăng trụ ABC.A'B'C' trên các cạnh AA’, BB’ lấy các điểm M, N sao cho AA' = 3A'M, BB' = 3B'N. Mặt phẳng (C'MN) chia khối lăng trụ đã cho thành hai phần. Gọi V 1 là thể tích của khối chóp C'.A'B'MN, V 2 là thể tích của khối đa diện ABCMNC'. Tỉ số V 1 V 2 bằng:
A. V 1 V 2 = 4 7
B. V 1 V 2 = 2 7
C. V 1 V 2 = 1 7
D. V 1 V 2 = 3 7
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh bằng a, A B C ^ = 60 0 , SA=SB=SC, SD= 2a. Gọi (P) là mặt phẳng qua A và vuông góc với SB tại K. Mặt phẳng (P) chia khối chóp S.ABCD thành hai phần có thể tích V 1 ; V 2 trong đó V 1 là thể tích khối đa diện chứa đỉnh S. Tính V 1 V 2
A. 11
B. 7
C. 9
D. 4
Cho hình chóp nón N có bán kính đáy bằng R, đường cao SO. Một mặt phẳng (P) cố định vuông góc với SO tại O’ và cắt khối nón theo hình nón có bán kính R’. Mặt phẳng (Q) thay đổi, vuông góc với SO tại điểm O 1 ( O 1 nằm giữa O và O') cắt khối nón theo thiết diện là hình tròn có bán kính x.Tính xtheo R và R’ để (Q) chia phần khối nón nằm giữa (P) và đáy hình nón thành hai phần có thể tích bằng nhau




Cho lăng trụ ABC.A'B'C', trên cạnh AA'', BB' lấy các điểm M, N sao cho AA' = 3A'M; BB' = 3B'N. Mặt phẳng (C'MN) chia khối lăng trụ đã cho thành hai phần. Gọi V 1 là thể tích khối chóp C'.A'B'NM, V 2 là thể tích khối đa diện ABC.MNC'. Tính tỉ số V 1 V 2
A . 2 9
B . 3 4
C . 2 7
D . 5 7
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M,N lần lượt là trung điểm của BB', CC'. Mặt phẳng (A'MN) chia khối lăng trụ thành hai phần, V 1 là thể tích của phần đa diện chứa điểm B, V 2 thể tích phần đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 7 2
B. V 1 V 2 = 2
C. V 1 V 2 = 3
D. V 1 V 2 = 5 2