Cho khối hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi V 1 , V 2 lần lượt là thể tích hai khối đa diện chứa C và A'. Tính V 1 V 2 .
Cho khối hộp ABCD.A'B'C'D'. Mặt phẳng (P) đi qua trung điểm của AB, A'D' và CC' chia khối hộp thành hai đa diện. Khối chứa đỉnh D có thể tích là V 1 , khối chứa đỉnh B có thể tích là V 2 Khi đó ta có
A . V 1 V 2 = 1 2
B . V 1 V 2 = 3 4
C . V 1 V 2 = 1
D V 1 V 2 = 1 3
Cho hình chóp tứ diện đều S.ABCD có canh đáy a, cạnh bên hợp với đáy một góc 60 o . Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành 2 phần. Tính tỉ số thể tích của hai phần đó.
A. 7 5
B. 7 3
C. 1 7
D. 1 5
Cho khối lăng trụ ABC.A'B'C' . Gọi M là trung điểm của BB' , N là điểm trên cạnh CC' sao cho CN = NC’. Mặt phẳng ( AMN ) chia khối lăng trụ thành hai phần có thể tích V 1 và V 2 như hình vẽ. Tính tỉ số V 1 V 2
A. V 1 V 2 = 5 3
B. V 1 V 2 = 3 2
C. V 1 V 2 = 4 3
D. V 1 V 2 = 7 5
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M,N lần lượt là trung điểm của BB', CC'. Mặt phẳng (A'MN) chia khối lăng trụ thành hai phần, V 1 là thể tích của phần đa diện chứa điểm B, V 2 thể tích phần đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 7 2
B. V 1 V 2 = 2
C. V 1 V 2 = 3
D. V 1 V 2 = 5 2
Cho lăng trụ ABC.A'B'C', trên cạnh AA'', BB' lấy các điểm M, N sao cho AA' = 3A'M; BB' = 3B'N. Mặt phẳng (C'MN) chia khối lăng trụ đã cho thành hai phần. Gọi V 1 là thể tích khối chóp C'.A'B'NM, V 2 là thể tích khối đa diện ABC.MNC'. Tính tỉ số V 1 V 2
A . 2 9
B . 3 4
C . 2 7
D . 5 7
Cho khối hộp chữ nhật ABCD.A'B'C'D' có thể tích bằng 2018. Biết M, N, P lần lượt nằm trên các cạnh AA', BB', CC' sao cho Mặt phẳng (MNP) chia khối hộp đã cho thành hai khối đa diện. Thể tích khối đa diện nhỏ hơn bằng
Cho lăng trụ ABC.A'B'C' trên các cạnh AA’, BB’ lấy các điểm M, N sao cho AA' = 3A'M, BB' = 3B'N. Mặt phẳng (C'MN) chia khối lăng trụ đã cho thành hai phần. Gọi V 1 là thể tích của khối chóp C'.A'B'MN, V 2 là thể tích của khối đa diện ABCMNC'. Tỉ số V 1 V 2 bằng:
A. V 1 V 2 = 4 7
B. V 1 V 2 = 2 7
C. V 1 V 2 = 1 7
D. V 1 V 2 = 3 7
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi, cạnh a 3 . Hình chiếu vuông góc với B' trên mặt phẳng (ABCD) là trung điểm AC, mặt phẳng (CDD'C') tạo với đáy góc 60 0 .Tính theo a thể tích khối hộp ABCD.A'B'C'D'
A . 9 a 3 8
B . a 3 8
C . 27 a 3 8
D . 2 a 3 3 9