Cho khối lăng trụ tam giác đều A B C . A 1 B 1 C 1 có tất cả các cạnh bằng a. Gọi M là trung điểm của A A 1 . Thể tích khối chóp M . B C A 1 là:
Câu 18: Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, AA’ = 2a. Tính thể tích khối lăng trụ ABC.A’B’C’ theo a:
\(A,\sqrt{3a^3}\) \(B,\dfrac{\sqrt{3a^3}}{6}\) \(C,\dfrac{\sqrt{3a^3}}{2}\) \(D,2a^3\)
Cho hình lăng trụ ngũ giác ABCD.A'B'C'D'. Gọi A'', B'', C'', D'', E'' lần lượt là trung điểm của các cạnh AA', BB', CC', DD', EE'. Tỉ số thể tích giữa khối lăng trụ ABCDE.A''B''C''D''E'' và khối lăng trụ ABCDE.A'B'C'D' bằng:
A. 1/2 B. 1/4
C. 1/8 D. 1/10.
Cho hình lăng trụ tam giác đều ABC.A'B'C' có AA' = a 3 , AB = a. Gọi M là trung điểm BC. Tính thể tích V của hình chóp AMB’C’.
A. V = a 3 3 4
B. V = a 3 3
C. V = a 3 4
D. V = a 3 3 2
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, BAC = 30 ° , AB = a 3 , AA' = a. Gọi M là trung điểm của BB'. Tính theo a thể tích V của khối tứ diện MACC'.
A. V = a 3 3 12
B. V = a 3 3 4
C. V = a 3 3 3
D. V = a 3 3 18
cho hình lăng trụ abc.a'b'c' có đáy abc là tam giác đều cạnh a, cạnh bên bằng a căn 3 và hình chiếu của A' lên mặt phẳng (ABC) trùng với trung điểm của BC. Tính thể tích của khối lăng trụ đó
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, A B C ⏜ = 30 0 . Gọi M là trung điểm của AB, tam giác MA'C đều cạnh 2a 3 và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối lăng trụ là ABC.A'B'C'
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng a√3/4. Tính thể tích V của khối lăng trụ ABC.A'B'C'
A. V = a 3 3 6
B. V = a 3 3 3
C. V = a 3 3 24
D. V = a 3 3 12
Cho khối lăng trụ tam giác A B C . A 1 B 1 C 1 có đáy là tam giác đều cạnh 2a, điểm A 1 cách đều 3 điểm A, B, C. Cạnh bên A A 1 tạo với mặt phẳng đáy một góc α . Thể tích khối trụ A B C . A 1 B 1 C 1 bằng 2 3 a 3 . Giá trị của α là.
A. 30 o
B. 45 o
C. 60 o
D. Đáp án khác