Cho khối chóp tứ giác đều S.ABCD. Gọi M là trung điểm SC, mặt phẳng (P) chứa AM và song song với BD chia khối chóp thành 2 khối đa diện. Đặt V 1 là thể tích khối đa diện có chứa đỉnh S và V 2 là thể tích khối đa diện có chứa đáy. Tỉ số V 1 V 2 bằng:
A. V 1 V 2 = 3 2
B. V 1 V 2 = 1 2
C. V 1 V 2 = 2 3
D. V 1 V 2 = 1
Cho khối đa diện như hình vẽ bên. Trong đó ABC.A' B' C' là khối lăng trụ tam giác đều có tất cả các cạnh đều bằng 1, S.ABC khối chóp tam giác đều có cạnh bên SA=2/3. Mặt phẳng (SA' B' ) chia khối đa diện đã cho thành hai phần. Gọi V 1 là thể tích phần khối đa diện chứa đỉnh A, V 2 là thể tích phần khối đa diện không chứa đỉnh A. Mệnh đề nào sau đây đúng
A. 72 V 1 = 5 V 2
B. 3 V 1 = V 2
C. 24 V 1 = 5 V 2
D. 4 V 1 = 5 V 2
Cho hình chóp S.ABC, M và N là các điểm thuộc các cạnh SA và SB sao cho MA= 2SM, SN = 2NB, α là mặt phẳng qua MN và song song với SC. Kí hiệu (H1) và (H2) là các khối đa diện có được khi chia khối chóp S.ABC bới mặt phẳng α trong đó ( H 1 ) chứa điểm S, ( H 2 ) chứa điểm A; V 1 và V 2 lần lượt là thể tích của ( H 1 ) và ( H 2 ). Tính tỉ số V 1 V 2
A. 4/3
B. 5/4
C. 3/4
D. 4/5
Cho điểm M nằm trên cạnh SA, điểm N nằm trên cạnh SB của khối chóp tam giác S.ABC sao cho S M M A = 1 2 ; S N N B = 2 . Mặt phẳng α đi qua MN và song song với SC chia khối chóp thàng 2 phần. Gọi V 1 là thể tích của khối đa diện chứa A , V 2 là thể tích của khối đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 4 5
B. V 1 V 2 = 5 4
C. V 1 V 2 = 5 6
D. V 1 V 2 = 6 5
Cho khối chóp tứ giác S.ABCD. Gọi M là trung điểm của SC, mặt phẳng (P) chứa AM và song song BD chia khối lập phương thành hai khối đa diện, đặt V1 là thể tích khối đa diện có chứa đỉnh S và V2 là thể tích khối đa diện có chứa đáy ABCD. Tính V 2 V 1 .
A. V 2 V 1 = 3
B. V 2 V 1 = 1
C. V 2 V 1 = 2
D. V 2 V 1 = 3 2
Cho khối chóp tứ giác S.ABCD. Gọi M là trung điểm của SC, mặt phẳng (P) chứa AM và song song BD chia khối lập phương thành hai khối đa diện, đặt V1 là thể tích khối đa diện có chứa đỉnh S và V2 là thể tích khối đa diện có chứa đáy ABCD. Tính V 2 V 1 .
A. V 2 V 1 = 3
B. V 2 V 1 = 1
C. V 2 V 1 = 2
D. V 2 V 1 = 3 2
Cho khối chóp tứ giác đều S.ABCD. Gọi M là trung điểm SC, mặt phẳng (P) chứa AM và song song với BD chia khối lập phương thành hai khối đa diện, đặt V 1 là thể tích khối đa diện có chứa đỉnh S và V 2 là thể tích khối đa diện có chứa đáy ABCD. Tính V 1 V 2
A. V 1 V 2 = 1 3
B. V 1 V 2 = 1 2
C. V 1 V 2 = 2
D. V 1 V 2 = 3 2
Cho khối chóp S.ABC có M ∈ S A , N ∈ S B sao cho M A → = − 2 M S → , N S → = − 2 N B → . Mặt phẳng α đi qua hai điểm M, N và song song với SC chia khối chóp thành hai khối đa diện. Tính tỉ số thể tích của hai khối đa diện đó (số bé chia số lớn).
A. 3/5
B. 4/5
C. 4/9
D. 3/4
Cho khối chóp S.ABC có M ∈ S A , N ∈ S B sao cho M A → = - 2 M S → , N S → = - 2 N B → . Mặt phẳng α đi qua hai điểm M, N và song song với SC chia khối chóp thành hai khối đa diện. Tính tỉ số thể tích của hai khối đa diện đó (số bé chia số lớn).
A. 3 5
B. 4 5
C. 4 9
D. 3 4