Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên S C = a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 . Tính thể tích V của khối chóp S.ABCD?
A. V = 8 a 3 6 .
B. V = 12 a 3 6 .
C. V = 4 a 3 6 .
D. V = 24 a 3 6 .
Cho hình chóp S.ABCD có đáy hình chữ nhật, AB = a; AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 450. Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
A. d = a 1315 89
B. d = 2 a 1315 89
C. d = 2 a 1513 89
D. d = a 1513 89
Cho hình chóp S.ABCDvới đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên S C = a 15 . Tam giác SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm của cạnh AD, khoảng cách từ B tới mặt phẳng (SHC) bằng 2 6 a . Tính thể tích V của khối chóp S,ABCD?
A. V = 8 6 a 3
B. V = 12 6 a 3
C. V = 4 6 a 3
D. V = 24 6 a 3
Cho hình chóp S.ABCD có đáy là hình chữ nhật, A B = a , A D = 2 a . Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 ° .Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC).
A. d = a 1315 89
B. d = a 1513 89
C. d = 2 a 1315 89
D. d = 2 a 1513 89
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a,SA=a ,SB= a 3 . Mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Khoảng cách từ điểm Cđến mặt phẳng (SAD) là
A. 3 a 3
B. 3 a 2
C. 3 a
D. 3 a 4
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên đáy ABCD trùng với trung điểm AB. Biết A B = a , B C = 2 a , B D = a 10 . Góc giữa hai mặt phẳng (SBD) và đáy là 60 ° . Tính d là khoảng cách từ A đến mặt phẳng (SCD) gần với giá trị nào nhất trong các giá trị sau đây ?
A. 0,80a
B. 0,85a
C. 0,95a
D. 0,98a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách từ điểm C đến mặt phẳng (SAD).
A. a 3 6
B. a 3 2
C. a 3 3
D. a 3 4
Cho hình chóp SABCD có đáy là hình vuông, BD=2a, tam giác SAC vuông tại S, mặt phẳng (SAC) vuông góc với mặt đáy, S C = a 3 . Khoảng cách từ điểm B tới mặt (SAD) bằng
A. a 30 5
B. 2 a 21 7
C. 2 a
D. 3 a
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB = a, BC = 2a, BD = a 10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 600. Tính thể tích V của khối chóp S.ABCD theo a
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8