a, hình vuông có thể là hcn mà bn vì nó đều có 4 góc bằng nhau và 2 cạnh đối song song bằng nhau
1: Xét tứ giác ABCD có
góc BAD=góc ABC=góc BCD=90 độ
=>ABCD là hình chữ nhật
a, hình vuông có thể là hcn mà bn vì nó đều có 4 góc bằng nhau và 2 cạnh đối song song bằng nhau
1: Xét tứ giác ABCD có
góc BAD=góc ABC=góc BCD=90 độ
=>ABCD là hình chữ nhật
Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF), AH cắt DC và BC lần luotj tại hai điểm M, N
a) Cmr tứ giác AEMD là hình chữ nhật
b) Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Cmr AC=2EF
c) Cmr: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Giúp mk vs
Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Chứng minh rằng :AC=2EF
c, Chứng minh rằng 1AD2=1AM2+1AN2
Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Chứng minh rằng :AC=2EF
c, Chứng minh rằng \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N.
1. Chứng minh rằng tứ giác AEMD là hình chữ nhật.
2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh
rằng: AC = 2EF.
3. Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N.
a. Chứng minh rằng tứ giác AEMD là hình chữ nhật.
b. Biết diện tích tam giác BCH gấp bốn lần diện tích AEH. Chứng minh rằng: AC = 2EF.
c. Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD, trên AB lấy E và trên AD lấy F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại M, N.
a) CMR: Tứ giác AEMF là hình chữ nhật
b) Biết diện tích tam giác BCH gấp 4 lần dt tam giác AEH. CMR: AC = 2EF
c) CMR: \(\frac{1}{AD^2}\)= \(\frac{1}{AM^2}\) + \(\frac{1}{AN^2}\)
Cho hình vuông ABCD trên cạnh AB lấy E và trên cạnh AD lấy F sao cho AE=AF. Vẽ AH _I_ BF(H thuộc BF); AH cắt DC và BC lần lượt tại M và N.
a) c/m AEMD là hình chữ nhật
b) Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. C/m AC=2EF
c) C/m 1/(AD2)=1/(AM2)+1/(AN2) các bạn giúp mình câu b câu c nha.
Cho hình vuông ABCD, trên cạnh AB lấy E
và trên AD lấy F sao cho AE=AF. Vẽ AH vuông góc với BF(H thuộc BF),AH cắt CD và BC tại M và N
a.CM AEMD là HCN
b. Biết diện tich tam giác BCH gấp 4 lần diện tích tam giác AEH.CM: AC=2AF
c. cmr 1/AD^2=1/AM^2+1/AN^2
Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N.
1. Chứng minh rằng tứ giác AEMD là hình chữ nhật.
2.CM: ∆CBH~∆EAH
3. Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)