Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoa Vô Khuyết

cho hình vuông ABCD,E thuộc BC qua A kẻ tia Ax vuông góc AE cắt CD tại F.trung tuyết Ay của tam giác AEF cắt CD ở K
a,chứng minh rằng AF2 = FK.FC
b,chứng minh rằng khi E di chuyển trên cạnh BC thì chu vi tam giác EKC có giá trị không đổi

a: Ta có: \(\hat{BAE}+\hat{DAE}=\hat{BAD}=90^0\)

\(\hat{FAD}+\hat{DAE}=\hat{FAE}=90^0\)

Do đó: \(\hat{BAE}=\hat{DAF}\)

Xét ΔABE vuông tại B và ΔADF vuông tại D có

AB=AD
\(\hat{BAE}=\hat{DAF}\)

Do đó: ΔABE=ΔADF
=>AE=AF
=>ΔAEF cân tại A

Xét ΔAEF cân tại A có \(\hat{EAF}=90^0\)

nên ΔAEF vuông cân tại A

ΔAEF vuông cân tại A

mà AK là đường trung tuyến

nên AK là phân giác của góc FAE

=>\(\hat{FAK}=\hat{EAK}=\frac12\cdot\hat{FAE}=45^0\)

ABCD là hình vuông

=>CA là phân giác của góc BCD

=>\(\hat{DCA}=\hat{BCA}=45^0\)

Xét ΔFAK và ΔFCA có

\(\hat{FAK}=\hat{FCA}\left(=45^0\right)\)

góc AFK chung

Do đó: ΔFAK~ΔFCA

=>\(\frac{FA}{FC}=\frac{FK}{FA}\)

=>\(FA^2=FK\cdot FC\)

b: Xét ΔAFK và ΔAEK có

AF=AE
\(\hat{FAK}=\hat{EAK}\)

AK chung

Do đó: ΔAFK=ΔAEK

=>KF=KE

ΔADF=ΔABE

=>DF=BE

CHu vi tam giác EKC là:

EK+KC+EC

=KF+KC+EC

=FC+EC

=DC+FD+EC

=DC+BE+EC

=DC+BC

=2BC không đổi


Các câu hỏi tương tự
Nguyễn Thanh Hiền
Xem chi tiết
Dũng Nguyễn Văn
Xem chi tiết
Thới Nguyễn Phiên
Xem chi tiết
Nguyễn Anh Tú
Xem chi tiết
Khuất Yến
Xem chi tiết
Ngân Vũ
Xem chi tiết
Nguyễn Văn Hòa
Xem chi tiết
Phạm Thị Lý
Xem chi tiết
Dương Đức Huy
Xem chi tiết