Cho hình vuông ABCD và điểm M thuộc cạnh BC. Kéo dài AM cắt tia DC tại N. Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E. Chứng minh rằng:
a, AE = AN
b,\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD , điểm M thuộc cạnh BC , kéo dài AH cắt DC tại N . Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E . CHỨNG MINH RẰNG :
A) AE=AN
B) \(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
cho hình vuông ABCD và điểm M thuộc BC. Tia AM cắt tia DC tại N. Qua A kẻ AM cắt CB tại E. CMR:
a)AE=AN
b) 1/AB2 = 1/AM2 +1/AN2
Cho hình vuông ABCD và điểm M thuộc cạnh BC.Kéo dài AM cắt tia DC tại N.Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E. CMR : AE = AN
Xem giúp mình ý d) bài này với ạ :
Cho hình vuông ABCD, điểm M thuộc cạnh BC ( M khác B,C). Qua B kẻ đường thẳng vuông góc với DM, đường thẳng này cắt các đường thẳng DM và DC theo thứ thự tại H và K.
a) Chứng minh: Các tứ giác ABHD, BHCD nội tiếp đường tròn
b) Tính góc CHK
c) Chứng minh: KH.KB = KC.KD
d) Đường thẳng AM cắt đường thẳng DC tại N. Chứng minh :
\(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Giúp mình với!
Cho hình vuông ABCD. Gọi E là diểm thuộc cạnh BC(E khác B). Tia AE cắt tia DC tại K. Kẻ d qua A vuông góc AE. Đường thẳng d cắt CD tại I.
a) Chứng minh 1/AE^2 +1/AK^2 không thay đổi khi E di chuyển trên BC
b) đường thẳng đi qua A vuông góc với IE cắt đường thẳng CD tại M. Kẻ MQ vuống góc AE. Chứng minh tam giác AMQ vuông cân và 1/AE +1/AK= căn 2/AM
c) Tìm vị trí của E để IK ngắn nhất.
cho hinh vuông abcd và điểm m thuộc bc kéo dài am cắt dc tại n qua a kẻ đường thẳng vuông với am cắt bc tại e cm ae=an
giúp mk vs mk đag cần gấp
Cho hình vuông ABCD (AB=a) , M là một điểm bất kỳ trên cạnh BC . Tia Ax vuông góc với AM cắt đường thẳng CD tại K . Gọi I là trung điểm cảu đoạn thẳng MK. Tia AI cắt đường thẳng CD tại E . Đường thẳng qua M song song với AB cắt AI tại N
1, Tứ giác MNKE là hình gì? Chứng minh
2, Cmr :\(AK^2=KC.KE\)
3, Cmr : Khi điểm M di chuyển trên cạnh Bc thì tam giác CME luôn có chu vi không đổi
4, Tia AM cắt đường thẳng CD tại G. Cmr : \(\frac{1}{AM^2}+\frac{1}{AG^2}\) không phụ thuộc vào vị trí của điểm M
Cho hình vuông ABCD. Trên BC lấy M, trên CD lấy N. Tia AM cắt đường thẳng CD tại K. Kẻ AI vuông góc với AK cắt CD tại I.
a, Chứng minh \(\frac{1}{AM^2}+\frac{1}{AK^2}=\frac{1}{AB^2}\)
b,Biết góc MAN= 45 độ , CM+CN=7, CM-CN=1. Tính số đo góc AMN