Cho hình vuông ABCD, trên đường chéo BD lấy điểm I sao cho BI= AB. Qua I kẻ đường thẳng vuông góc với BD cắt AD tại E
a) So sánh ba đoạn thẳng ID, IE, EA
b) Xác định vị trí tương đối của đường tròn (E;EA) với đường thẳng BD
ai nhanh mk tick cho nha!!!
Cho hình vuông ABCD trên đường chéo B,D lấy điểm I sao cho AD=OI. Qua I kẻ đường thẳng vuông vói BD cắt AD tại E a)so sánh ID,IE,AE b)BD có phải tiếp tuyến của (E,EA)
Cho hình vuông ABCD, Trên đường chéo BD lấy BH = BA. Qua H kẽ đường thẳng vuông góc với BD và đường vuông góc cắt AD tại O
a) So sánh: OA, OH, HD
b) Xác định vị trí tương đối của đường thẳng BD với vòng ( O; A)
Cho hình vuông ABCD, trên BD lấy I sao cho BI=BA. Đường vuông góc với BD tại I cắt AD ở E
a) so sánh AE;EI;ID
b) c/m BD là tiếp tuyến của (E;EA)
c) Giả sử ID=a. Tính cạnh hình vuông
cho hình vuông ABCD,đg chéo BD lấy BH=BA(H nằm giữa B và D).Qua H kẻ đg thẳng vuông góc vs BD và đg này cắt AD tại O
a)So sánh OA;OH;HD
b)Xác định vị trí tương đối của đg thẳng BD vs (O;OA)
Cho hình vuông ABCD hai đường chéo AC và BD cắt nhau tại O. Lấy điểm E bất kì thuộc đoạn thẳng OD. Trên tia đối của tia EC lấy điểm F sao cho OF = OC Đường thẳng đi qua F và vuông góc với FO cắt BD tại S Ke FH vuông góc với BD tại H a)Tính BFD b)Chứng minh FC là phần giác của BPD © Kẻ EF vuông góc với BF tại 1. Chứng minh ST vuông góc với CF
giải hộ mik bài này với:
cho hình vuông ABCD, điểm I thuộc Bd sao cho BI=BA. kẻ IE vuông góc (E thuộc AD). chứng minh BD là tiếp tuyến của (E;EA)
giải hộ mik bài này với:
cho hình vuông ABCD, điểm I thuộc Bd sao cho BI=BA. kẻ IE vuông góc (E thuộc AD). chứng minh BD là tiếp tuyến của (E;EA)
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc đường tròn (O), với C khác A và B, biết CA < CB. Lấy điểm M thuộc đoạn OB, với M khác O và B. Đường thẳng đi qua điểm M vuông góc với AB cắt hai đường thẳng AC và BC lần lượt tại hai điểm D và H.
1) Chứng minh bốn điểm A, C, H, M cùng thuộc một đường tròn và xác định tâm của đường tròn này.
2) Chứng minh: MA.MB = MD.MH
3) Gọi E là giao điểm của đường thẳng BD với đường tròn (O), E khác B. Chứng minh ba điểm A, H, E thẳng hàng.
4) Trên tia đối của tia BA lấy điểm N sao cho MN = AB, Gọi P và Q tương ứng là hình chiếu vuông góc của điểm M trên BD và N trên AD.
Chứng minh bốn điểm D, Q, H, P cùng thuộc một đường tròn.