Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N.
1. Chứng minh rằng tứ giác AEMD là hình chữ nhật.
2.CM: ∆CBH~∆EAH
3. Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
\(a)\) Xét tam giác vuông ADM và tam giác vuông BAF có :
\(AD=AB\) ( do ABCD là hình vuông )
\(\widehat{DAM}=\widehat{ABF}\) \(\left(=90^0-\widehat{BAF}\right)\)
Do đó : \(\Delta ADM=\Delta BAF\) ( cạnh góc vuông - góc nhọn )
Suy ra : \(DM=AF\) ( 2 cạnh tương ứng )
Mà \(AE=AF\)(GT) \(\Rightarrow\)\(DM=AE\)
Tứ giác AEMD có : \(DM=AE\)\(;\)\(DM//AE\) ( do \(AB//CD\) ) và có \(\widehat{ADC}=90^0\) nên AEMD là hình chữ nhật
Vậy AEMD là hình chữ nhật
\(b)\) Xét \(\Delta HAB\) và \(\Delta HFA\) có :
\(\widehat{ABH}=\widehat{FAH}\) ( do \(\widehat{ABF}=\widehat{DAM}\) theo câu a ) *(góc DÂM -_- haha)*
\(\widehat{BHA}=\widehat{AHF}\) \(\left(=90^0\right)\)
Do đó : \(\Delta HAB~\Delta HFA\) \(\left(g-g\right)\)
Suy ra : \(\frac{HB}{AH}=\frac{AB}{AF}\) ( các cặp cạnh tương ứng tỉ lệ )
Mà \(AB=BC;AF=AE\left(=DM\right)\) nên \(\frac{HB}{AH}=\frac{BC}{AE}\)
Lại có : \(\widehat{HAB}=90^0-\widehat{FAH}=90^0-\widehat{ABH}=\widehat{HBC}\)\(\Rightarrow\)\(\widehat{HAB}=\widehat{HBC}\)
Xét \(\Delta CBH\) và \(\Delta EAH\) có :
\(\frac{HB}{AH}=\frac{BC}{AE}\)
\(\widehat{HAB}=\widehat{HBC}\)
Do đó : \(\Delta CBH~\Delta EAH\) \(\left(c-g-c\right)\)
Vậy \(\Delta CBH~\Delta EAH\)
\(c)\) \(\Delta ADM\) có \(CN//AD\) và cắt \(AM;DM\) nên theo hệ quả định lý Ta-let ta có :
\(\frac{CN}{AD}=\frac{MN}{AM}\)\(\Leftrightarrow\)\(\frac{AD}{AM}=\frac{CN}{MN}\)\(\Leftrightarrow\)\(\frac{AD^2}{AM^2}=\frac{CN^2}{MN^2}\) \(\left(1\right)\)
\(\Delta ABN\) có \(CM//AB\) và cắt \(AN;BN\) nên theo hệ quả định lý Ta-let ta có :
\(\frac{MN}{AN}=\frac{MC}{AB}\) hay \(\frac{MN}{AN}=\frac{MC}{AD}\)\(\Leftrightarrow\)\(\frac{AD}{AN}=\frac{MC}{MN}\)\(\Leftrightarrow\)\(\frac{AD^2}{AN^2}=\frac{MC^2}{MN^2}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{AD^2}{AM^2}+\frac{AD^2}{AN^2}=AD^2\left(\frac{1}{AM^2}+\frac{1}{AN^2}\right)=\frac{CN^2}{MN^2}+\frac{MC^2}{MN^2}=\frac{CN^2+MC^2}{MN^2}=\frac{MN^2}{MN^2}=1\)
\(\Rightarrow\)\(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AD^2}\) ( đpcm )
Vậy \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)